
Executive Summary of the Thesis

Non-conforming mesh adaptivity for Hybrid High-Order methods

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Alessandra Crippa

Advisor: Prof. Paola Antonietti

Co-advisor: Daniele Di Pietro

Academic year: 2021-2022

1. Introduction
The Hybrid High-Order (HHO) methods are
discretization schemes for PDEs among the
polytopal methods, whose key features are the
arbitrary approximation orders, the hybrid
nature (with unknowns both on cells and edges
in 2D), and the properties related to polytopal
methods in general, namely the freedom in
discretizing the domain (see [3], [2] and [1]).
They can indeed easily cope with elements
with different numbers of edges, with hanging
nodes, and with non-matching interfaces. As a
direct consequence, it is possible to discretize
the physical domain through non-conforming
meshes, which is particularly relevant for physi-
cal phenomena occurring in small areas of the
domain.

In this work, after introducing the HHO
method, we will explain an automatic mesh
adaptation procedure, based on a posteriori
error estimates. Our ultimate goal will be to
test it coupled with a local non-conforming
refinement of the mesh, for which we will im-
plement some methods within the HArD::Core
library. The latter provides a suite of C++
tools to implement numerical schemes on
general polytopal meshes and it lacks, up to

now, methods to perform local non-conforming
refinement of the mesh.

2. The HHO method
Let us see how HHO is built for the Poisson
problem, that we recall in its weak formulation.
Find u ∈ H1

0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω). (1)

where the bilinear form a : H1(Ω)×H1(Ω)→ R
is such that a(u, v) := (∇u,∇v).

The first ingredients to build the HHO method
are polynomial projectors, in particular the L2-
orthogonal projector π0,l

X : L1(X) → Pl(X) and
the elliptic projector π1,l

X : W 1,1(X)→ Pl(X).
They will be necessary to inspire an appropriate
way to re-write the left-hand side of problem 1.
Indeed, by exploiting the integration by parts
formula, namely,
given a function v ∈ W 1,1(T ) and a function
w ∈ C∞(T ),

(∇v,∇w)T = −(v,∆w)T +
∑

F∈FT

(v,∇w·nTF )F ,

and by specializing it for a polynomial function
w ∈ Pk+1(T ), we discover a fundamental
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relation between the projectors; namely,
from π0,k

T e π0,k
F , projectors of degree k it is

possible to completely characterize the ellip-
tic projector of higher degree k+1, π1,k+1

T .
The first idea of HHO methods arises here,
namely to take as unknown some objects that
can be interpreted as polynomial projectors:
((π0,k

T v)T∈Th , (π
0,k
F v)F∈Fh

).

2.1. Local contributions
Let us now therefore introduce the local HHO
spaces, where we will look for a discrete solution.

Uk
T := {vT = (vT , (vF )F∈FT

) :

vT ∈ Pk(T ) and vF ∈ Pk(F )

∀F ∈ FT ,

(2)

Notice that the discrete space of the method
is not included in the continuous one, H1

0 (Ω),
differently from what happens in the standard
finite elements method. This feature will be at
the base for the more flexible properties of the
mesh. (verificare, è giusto? )

Then we define the second main ingredient
of the method: the local potential reconstruc-
tion operator, which is at the core of HHO
methods. It is conceived such that it replicates
the integration by parts formula that links
the elliptic projector π1,k+1

T of degree k + 1 to
π0,k
T and π0,k

F projectors on the element and its
faces, of degree k. As a result we can obtain an
important relation:

∀v ∈W 1,1(T ) pk+1
T IkT v = π1,k+1

T v, (3)

where IkT , the interpolator, is the operator that
allows us to interpret the unknowns of HHO
scheme as the L2 projectors of a function v on
the element and its faces.

IkT : W 1,1(T )→ Uk
T ,

IkT v := (π0,k
T v, (π0,k

F v)F∈FT
).

(4)

The result 3 will be fundamental for the HHO
method to be consistent for polynomial exact
solutions.

We can now arrange the final local prob-
lem, approximating the continuous bilinear
form a on each element of the mesh T with the

discrete bilinear form aT : Uk
T × Uk

T → R such
that, for all uT , vT ∈ Uk

T ,

aT (uT , vT ) := (∇pk+1
T uT ,∇pk+1

T vT )T

+sT (uT , vT ).
(5)

The first term is responsible for consistency, in-
deed taking uT as the interpolate of a polyno-
mial function, exploiting therefore 3 and thanks
to the definition of elliptic projection, we re-
cover the continuous bilinear form a. The sec-
ond is a stabilization term, other crucial ingre-
dient for HHO methods. It is needed to recover
the coercivity of the bilinear form, so that the
method will be proved to be well-posed (thanks
to Lax-Milgram theorem). Hence, sT is assumed
to satisfy some properties: it is symmetric and
semidefinite positive, it makes the bilinear form
coercive, and it satisfies polynomial consistency
too.

2.2. Global discrete problem
Finally, the global discrete problem will be based
on the following space of unknowns:

Uk
h :=

{
vh = ((vT )T∈Th , (vF )F∈Fh

) :

vT ∈ Pk(T ) ∀T ∈ Th and

vF ∈ Pk(F ) ∀F ∈ Fh

}
, (6)

which is a collection of polynomial functions on
the cells and on the faces of the mesh. The global
bilinear form will be given by ah : Uk

h×Uk
h → R

and sh : Uk
h ×Uk

h → R such that for all uh, vh ∈
Uk

h,
ah(uh, vh) :=

∑
T∈Th

aT (uT , vT ),

sh(uh, vh) :=
∑
T∈Th

sT (uT , vT ).
(7)

The global bilinear form enjoys the property
of stability (hence coercivity), boundedness and
consistency. It follows the well-posedness of the
discrete Poisson problem

ah(uh, vh) = (f, vh) ∀vh ∈ Uk
h,0. (8)

2.3. Convergence analysis
It is possible to prove some convergence esti-
mates for the HHO methods, in two norms:
• the energy norm, induced by the discrete

bilinear form ah;
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• the L2 norm.
Clearly we cannot expect to compute directly
the error as the difference between the numer-
ical solution uT and the exact one, u, as they
do not live in the same space (as we mentioned,
Vh ̸⊂ V ) so we must compare uT to the interpo-
late of u, Ikhu (or, as we see next, we can compare
its component to the proper projection of u into
polynomial spaces).
For sufficiently regular solutions and mesh se-
quences, it holds

∥uh − Ikhu∥a,h ≲ hr+1|u|Hr+2(Th). (9)

Further assuming elliptic regularity,

∥uh − π0,k
h u∥L2 ≲

{
h2∥f∥H1(Th) if k = 0,

hr+2|u|Hr+2(Th) if k ≥ 1,

(10)

where uh is the discontinuous polynomial func-
tion given by the components of uh correspond-
ing to the each element T . The last property
is known as super convergence property of HHO
methods.

2.4. Implementation
The implementation is carried out by fixing
proper basis for the discrete spaces and deriving
accordingly a linear algebraic system - which ac-
counts also for the boundary conditions - equiva-
lent to the discretized weak formulation. A cru-
cial technique to be highlighted, used to assem-
ble the final linear system, is the so-called static
condensation. It allows to account only for face
unknowns, making the HHO scheme a skeletal
method, reducing therefore the size of the lin-
ear system to be solved and the computational
effort.

3. A posterior Error Estimator
Since the aim of this work is to focus on adap-
tivity of the mesh, we briefly introduce some a
posteriori error estimators, whose goal will be
to drive the mesh refinements. Notice however
that this aspect will be carried out in our
upcoming work, while for now, in this thesis, we
will exploit only the true error to drive the mesh
refinement, considering a benchmark case with
a known solution. The mesh adaptivity proce-
dure gives some crucial advantages, such as the

significant enhancement of the performance of
problems with singular solutions, allowing to
fully exploit the high-order of approximation of
HHO schemes. Indeed, for smooth exact solu-
tions, increasing the polynomial degree yields a
corresponding increase in the convergence rate,
as we saw in the previous section. However, if
the exact solution does not satisfy the requested
regularity assumptions, the order of convergence
is limited by the poor regularity of the solution.
In order to restore optimal order of convergence
local mesh adaptation can help, typically using
local a posteriori error estimators to mark the
elements with the largest error, so that they
will be refined.

The a posteriori error estimator on which
we will focus is the so-called residual based.
It can be proven that the discretization error
- computed as the exact solution uminus the
polynomial reconstruction of the numerical
solutionuh - is bounded from above by a scalar
quantity ε, the so-called estimator.

∥∇h(p
k+1
h uh − u)∥ ≤ ε.

ε can be moreover proven to be computable only
through the discrete solution and the problem
data, hence the upper bound is said to be reli-
able. Moreover, since there are no undetermined
constants in the upper bound, it is said to be
guaranteed and fully computable. It is also im-
portant for an estimator to be locally and glob-
ally efficient - namely bounded from above by
the discretisation error - to be sure that the es-
timators localise the error correctly and do not
overstimate it. Indeed it can be proven for our
residual based error estimator the following:

ε ≲
(
∥∇h(p

k+1
h uh − u)∥ + |uh|s,h

)
.

This implies that the a posteriori estimate is
eligible to drive local mesh refinement.

The typical adaptive procedure is charac-
terized by the iteration of the following four
steps: solve for the numerical scheme on the
current mesh, compute the error estimator,
mark certain elements with precise values of the
estimators, refine them to get the next mesh
(see Algorithm 1).
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Algorithm 1 Automatic mesh adaptation
1: Set tol > 0 and Nmax

2: Generate an initial coarse mesh T (0)
h , set

n← 0, and let T (n)
h ← T (0)

h

3: repeat
4: Solve the HHO problem (8) on T (n)

h

5: for T ∈ T (n)
h do

6: Compute and store the local estimator
εT

7: end for
8: for T ∈ T (n)

h do
9: if T is among the 5% elements with the

largest local estimator then
10: mark the element T
11: end if
12: end for
13: Set n← n+ 1 and generate a novel mesh

T (n)
h by by refining the marked elements

14: until ε < tol or n > Nmax

The adaptation procedure has been tested by [3]
on the Fichera corner problem, whose solution is
known to have a singularity in the origin. The
authors showed that (see Fig. 1) uniformly re-
fined meshes fail in achieve the optimal order
of convergence (because of the poor regularity
of the solution), however, exploiting instead the
adaptation procedure (with a conforming refine-
ment of the mesh), it is possible to recover the

optimal convergence rates of N
(k+1)

d
dof and N

(k+2)
d

dof

in both the energy-norm and L2-norm. This
confirms that the above mentioned algorithm is
able to restore optimal orders of convergence.

Figure 1: Error vs. Ndof for the test case
of Fichera problem. “un”= uniformly refined
meshes, “ad”= adaptively refined meshes, from
[3].

4. Non-conforming mesh adap-
tivity

The last section of this work includes our
original contribution, namely some methods to
implement a local non-conforming adaptivity
of the 2D mesh. The starting point it is the
HArD::Core library, implemented by D. Di
Pietro and J. Droniou, which provides a suite
of C++ tools to implement numerical schemes
on general polytopal meshes, whose unknowns
are polynomials in the cells, both on the edges
and on the faces (hybrid methods). The library
was mainly designed for the Hybrid High-Order
methods: several HHO methods are already
implemented in this framework, however it
provides tools which are useful for a range of
numerical methods.

Within the library, the main class designed
to handle the mesh is the Mesh class, which
contains a vector of Cell, a vector of Edge and
a vector of Vertex objects, based on classes
that suitably represent all the entities of the
mesh. The mesh class provides also methods
to extract single elements, such as particular
cells, edges, or vertices given their given. For
instance, the function Mesh::get_cells()
returns a vector with all the cells of the mesh,
ordered according to their global indeces, while
the function Mesh::cell(size_t i) returns
the cell with global index i.

The goal of this work is to develop a new
class which extends the classical Mesh, called
DynamicMesh, able to handle the refinement
(and coarsen) operations, and at the same time
which mantains the same interface as Mesh.
As a result the two classes can be used inter-
changeably and all the already existing schemes
for solving partial differential equations, which
use the Mesh class and its methods, will not
need to be changed. Hence, the aim of the
our DynamicMesh class will be to add some
new methods to refine the mesh, and in the
meantime to overload the already existing getter
functions get_cells(), cell(size_t i), etc.
Clearly they will have to iterate over all the
mesh entities properly, going through every
element and every sub-element coming from the
refinement operations. We will work only with
triangular meshes, splitting at each refinement
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the cell in 4 smaller trianglular cells joining the
midpoints, as displayed in fig. 2.

Figure 2: 2D triangular refined cell.

The mechanism of our refinement method is
the following: when a cell (edge) is refined, it
becomes father of four (two) new children cells
(edges, respectively). In the DynamicMesh are
contained two new vectors of objects based
on the new classes CellInfo and EdgeInfo,
whose goal is to store the information of the
refinement. Each CellInfo represents a virtual
cell of the refined mesh and each EdgeInfo a
virtual edge and they basically contain pointers
to their children and to their father in order to
keep track of all the refined elements. However,
notice that the vectors cells, _edges and
_vertices will actually not change.

When the refinement(CellInfo* c) function
is called, it creates properly the 4 new cells from
c, add them to the children attribute of c, and
adds c to their father attribute. In this way we
create a tree-like structure of the mesh entities,
and we will be able to iterate correctly through
every element follow the branches of the tree,
by mean of recursive functions.

The coarsen method inside DynamicMehs
class, works exactly in the opposite direction.
Its aim is to merge the CellInfo taken as
argument to its brother, by eliminating all his
father’s children and their subchildren.

5. Numerical tests
Finally we tested the adaptation algorithm 1
on our new non conforming refinement meth-
ods, still considering the Fichera corner problem,
which has a singularity in the origin.
We showed how the optimal convergence orders
are recovered (see Fig. 5 with polynomial degree
k = 3 as example).

Figure 3: Error vs. Ndof for the Fichera solu-
tion with polynomial degree 3. Expected con-
vergence rate: N

−5/2
dof for the L2 error, N−2

dof en-
ergy error.

To conclude we display an example of refined
meshes at different iterations of the mesh adap-
tation algorithm (see fig. 5).

Figure 4: 10 iterations.

Figure 5: 25 iterations.

6. Conclusions
As we showed in the last section, a non-
conforming adaptivity of the mesh is able to
recover the optimal convergence rates also
for poorly regular solutions. The novelty
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introduced in our work, namely the non con-
formity of the refinement, can significantly
reduce the computational cost required by
an adaptation procedure, since it needs to
re-build the mesh just locally at every refine-
ment operation. It suits perfectly problems
where physical phenomena occur in small
areas of the domain, or problems which result in
poorly regular solutions, like interface problems.

In upcoming work it is possible to incor-
porate a posteriori estimators into the mesh
adaptation procedure, as well as the possibility
to coarsen the mesh where the errors are low.
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