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Abstract

In today’s world it has become of undelayable importance to reduce the amount of energy
wasted in all human activities. A sector that may benefit from energy saving is information
technology, with respect to the amount of energy required to perform a computation (in
the broader sense of the word). In this work we investigate the feasibility of building
a compiler driver that optimizes its produced code, such that when being executed on
a physical machine, it will consume the least possible amount of energy. We explore
the basic components needed to build such a driver, and we highlight that it is of great
importance to have an accurate oracle capable of predicting the power consumption of
an arbitrary program. Moreover, we note that such an oracle must be trained to the
specific processor we wish to emit code for: in this work, we focus ourselves on building
this specific component. We explain the design choices we made, the steps we performed
to measure and profile a test processor (an ARM Cortex-M4), how we generated the test
cases, and how we processed the results to build the oracle, using multiple linear regression
models. Then, we assess the quality of the resulting predictor, both with usual statistical
goodness indicators and by validating it with real programs, also by testing it with the
experimental compiler optimization framework Taffo. We show that our predictor reached
an accuracy peak of 86.21%. In the end, we summarise all the difficulties we encountered
in our example predictor building process, and we outline the requirements needed to
build accurate oracles.
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Abstract

Nel mondo di oggi è diventato di irrimandabile importanza ridurre la quantità di energia che
viene sprecata in tutte le attività umane. Un settore che può trarre beneficio dal risparmio
energetico è l’informatica, riferendoci alla quantità di energia richiesta per effettuare un
calcolo (nel senso più ampio del termine). In questa tesi indaghiamo la fattibilità di
sviluppare un compilatore che ottimizzi il proprio codice prodotto, in modo che quando
eseguito sulla macchina target, consumi la minor quantità di energia possibile. Esploriamo
i componenti base necessari per costruire un simile compilatore, e sottolineiamo che è di
grande importanza avere un oracolo accurato capace di predire il consumo in potenza di
un programma arbitrario. Inoltre, notiamo che un simile oracolo deve essere addestrato sul
specifico processore per cui vorremmo emettere codice: in questa tesi, ci concentriamo sulla
costruzione di questo specifico componente. Spieghiamo le scelte di design che abbiamo
fatto, i passi che abbiamo eseguito per misurare e profilare un processore di prova (un
ARM Cortex-M4), come abbiamo generato i casi di test, e come abbiamo processato i
risultati per costruire l’oracolo, usando modelli lineari a regressione multipla. Dopodiché,
valutiamo la qualità del predittore risultante, sia con i soliti indicatori statistici di bontà
sia validandolo con programmi reali, anche testandolo con il framework di ottimizzazione
per compilatori sperimentale Taffo. Mostriamo che il nostro oracolo raggiunge picchi di
accuratezza del 86.21%. Infine, ricapitoliamo tutte le difficoltà che abbiamo incontrato
nella costruzione del nostro predittore d’esempio, e delineiamo i requisiti necessari per
costruire oracoli accurati.

Parole chiave: potenza, stima energetica, ottimizzazione, compilatori
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1| Introduction

1.1. The importance of energy estimation

Along with a constant search for speed, reliability, composability, today’s software engi-
neering aims at a careful use of resources. Non-functional objectives like executing work
in an efficient way can be of great importance in some settings. This is true for a variety
of resources, like storage space, memory or time, but in this work we focus our analysis on
the energetic aspect.

By estimating the amount of energy required to perform a certain calculation (in the
broader sense of the term), developers can better estimate the resources required by their
systems. For example, embedded developers may predict how long the batteries of their
devices will last. This in turn leads to a better planning of the required maintenance
interventions. Moreover, data centers around the world usually use large amounts of
electrical energy: server administrators can know how much their system will absorb, and
they can scale them accordingly.

On the other hand, reducing the amount of energy required to perform a task is important
to reduce the environmental footprint digital systems have, a topic of truly undelayable
importance nowadays. Moreover, it can reduce the costs of running such systems. For
instance, embedded devices may extend the useful lifetime of their batteries, and a
reduction in server maintenance costs can be beneficial for the agency running them.

Software has been optimized from almost the beginning of its existence. Usually, this
advancement has been driven by the need to reduce the time required by a program,
both by researching more efficient algorithms and by using compiler optimizations. Even
focusing just on the latter, compiler technology has advanced enormously, providing tools
to intelligently inspect and transform code to significantly reduce its execution time. It is
reasonable to assume that a software running for less time will require less energy, since
the machine running it will be running for less time. This assumption may however be
improved in three aspects.
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• There are cases in which the fastest code is not necessarily the most efficient. For
instance, a sequence of instructions may be replaced with a shorter sequence of more
energy consuming ones. To prioritize energy consumption, it would be advisable
not to perform the substitution. In other words, energy consumption and speed of
execution may be conflicting objective functions.

• There may be sequences of instructions equivalent from the point of view of time,
but not of energy. A compiler aiming only to increase time efficiency would simply
ignore a transformation not beneficial for its instructed purpose, even if it may bring
benefits from other points of view.

• This claim has not yet been thoroughly tested: a lot of literature focus on very
specific processors, or test a limited range of applications.

We must note that there may be important trade-offs to be considered. For instance, a
more efficient system may be not as fast as the old one, and this may be inconvenient or
even critical in situations where speed is a priority, like emergency systems.

1.2. The ideal tool

We hypothesize a compiler tool that can operate energy aware optimizations. Such tool
would receive as inputs the source code we would like to compile, along with a flag
specifying the target architecture; as a result it would drive the underlying generic compiler
to perform a certain number of optimization, so to emit a target code as efficient as possible
for that specific architecture. This presents a number of obstacles.

Compiler construction is a delicate science, most of the time non-recyclable between
different compilers. As good as the final work would be, it would be then confined to a
single compiler. Our aim is instead to apply this research to the maximum number of
compilers possible, so to maximize its effectiveness and optimize the work invested in its
development. For this reason, we suggest developing for the LLVM compiler technology [14],
as it is the backbone of a variety of compilers.

Moreover, in order to know when to perform an optimization, we need to know what is
the difference in the predicted power consumption such optimization would introduce.
This means computing the difference between the optimization pass input and the output
versions of the program. In turn, to do this it is required to be able to estimate the power
consumption of an arbitrary program, that is, to build an oracle.

Since we expect different processors to have different power consumptions for the same
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program, our oracle needs to be trained with respect to the processor the compiler will emit
code for. However, profiling the target architecture is difficult when it is done downstream
with respect to the processor manufacturing process. In order to obtain a reliable profile
for a given central processing unit (CPU), we would need information about its internal
structure, along with the power consumption profile for the complete instruction set
architecture (ISA), depending on the profiling methodology we will choose. These pieces
of information are practically always kept secret by the manufacturer, partly because
disclosing them would compromise the secrecy about their intellectual property. Therefore,
we need to extract the model from the actual manufactured chip.

In this work we focus our analysis only on the first part of this tool, that is, the building
of the oracle. Integrating such a tool in a compiler driver is a possible future work.

1.3. Thesis structure

In Chapter 2 we present the state of the art with respect to the energy and power estimation
field; then, in Chapter 3 we will describe the tool we built, and its structure; Chapter 4
we illustrate the model performance indicators, and we show the model results with some
test benchmarks; lastly, in Chapter 5 we discuss the feasibility of the more general oracle
development process.
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2| State of the art

Estimating the power consumption of a computing device is a relatively researched topic.
There have been different approaches, depending on the technique chosen. Ideally, we are
interested in devising a perfect oracle, able to receive as inputs the same inputs given to
the real device, and to give as output the accurate estimate of the power dissipated by the
device, or the energy consumed in the process. The two may or not be equivalent, since
for different use cases the device could perform a terminating calculation, or run a service
that must be always available. In the former case one is probably interested in the energy
required in the process, in the latter the power (i.e., power per unit of time) may be more
useful. In this work we studied an embedded device, usually employed to run a service, so
in the following we will restrict our analysis on the power consumption.

2.1. Estimation techniques

The distinction on how do we build the oracle (and on how does it work) shows a large
range of granularity. A first distinction we can do is about the general principle at the
base of the oracle working. Such a distinction can be very broad, and possibly encompass
very different techniques. We briefly discuss which are the best for our analysis.

A first possibility is to perform a simulation of the processor under test, i.e. to simulate
the hardware components and their behaviour (including the power consumption) with
a software program [9]. The simulator receives as input a description of the device in a
suitable hardware description language (HDL), possibly (but not necessarily) Verilog [11]
or VHDL [12], along with some code to execute on its physical counterpart, and it simulates
the processor working (up to the simplified physical effects). In this way, we can obtain an
estimate of how much energy the computation will consume. This process is slow, but
more importantly it requires a physical modelling of the processor, based on accurate
information of its internal workings and architecture. This information is rarely disclosed
by the manufacturer, so some approximations and speculations may be made, for instance
by providing higher level descriptions than the HDLs. The goodness of the model result is
as good as the description accuracy.
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Another approach is to rely on tools provided directly by the manufacturers, such as
hardware performance counters (HPCs) and performance monitor counters (PMCs) [9].
Such tools are provided by the CPU, accessed by specific registers or files, and they
measure appropriate metrics about the CPU workings (like elapsed clock cycles or directly
a power measurement). Their usage is very straightforward, but their accuracy greatly
varies [7], with errors up to 32%, so they are not a very sound approach. Moreover, they
require running the code on the physical processor, which is a setup that may be unfeasible
when developing an application. For instance, the application may involve performing
intensive computation, or connecting to network resources. This is a cumbersome but
necessary workflow when developing the application logic: if the process is repeated for
every compiler optimization pass, it may scale poorly.

Using a multimeter to perform direct measuring on the CPU is clearly the method that
by definition provides the “perfect” measure, but it requires deploying the program, run it
on the processor, and measure the current with a potentially complex apparatus. It is
unlikely that such an ecosystem is at disposal of software developers, along with all the
problems highlighted with HPCs. However, we can use direct measures to build a ISA
energy model, i.e. a model that extract a power estimate from just the binary code that is
going to run on the processor. Such models are generally constructed from a large dataset
of measures taken on the physical processor, but after they have been properly tuned,
they can provide a quick and ideally accurate prediction, without the need to access to
the training data or to run the profiled code. This approach has been intensively explored,
and a number of models have been tested, with different results (as seen in the following).

When comparing these techniques together, as shown in Table 2.1, ISA models offer
the highest easiness of use for the developer, require no external setup when doing the
prediction, and provide sufficiently accurate results. For this reason we concentrate our
analysis on these models in this work.

2.2. Previous works on ISA models

2.2.1. General hypotheses

Numerous approaches have been proposed on the topic. In the following, we present a
few relevant works about power and energy estimation. While some of the proposals are
quite different from one another, there are some general hypotheses we can abstract from
the analysed works. We can analyse our survey results along two parallel but distinct
dimensions: how much information do we need to feed to the model (i.e., the model
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Table 2.1: Summary comparison of the power estimation techniques.

Approach Complexity Required
knowledge

Easiness of use
by developers

Accuracy

Simulation medium very high medium good
HPCs low little medium low
Direct mea-
suring

medium-
high

low very low perfect

ISA energy
model

high variable high variable

complexity), and how much a priori information is needed to perform the analysis.

An ideal oracle would analyse the code that is going to be run on the processor, and extract
some information, characteristics and statistics from it. Those data can generally be
modelled as a series of variables V = x1, x2, . . . , xn. Reasonably, we expect the model to be
as accurate as many variables we have regarding the input. For example, one may consider
the number of instructions to complete the task, how often is the task performed and which
is the sequence of instructions composing the task code. We present in Section 2.2.3 a work
regarding the usage of similar information in the prediction. If we do not know the value of
all the variables, we can try to recover manually (when it is possible) the missing ones from
the others or from the inputs. As a simple example, if we do not know the number of clock
cycles taken by the task, but we have the sequence of instructions and the information on
how many cycles each instruction takes to execute, we may estimate the total number of
clock cycles. In the end, we substitute at each missing variable xi a term consisting in
a function of other variables or external data: fi(x1, x2, . . . , xi−1, xi+1, . . . , xn, e1, . . . , em),
where e represent externally available data (such as a table containing the information on
the clock cycle count).

Even when we cannot recover the missing variables with this approach, we may be able
nonetheless to estimate them by assigning an heuristic value. For example, if we do not
have the number of clock cycles each instruction takes, we can compare our model with
other microprocessor architecture, and port the data to the ISA under test. In such a
case, the underlying assumption would be that the two CPUs will have different but
similar cycle counts: for example, it is a quite safe assumption to say that performing a
division takes way more time than performing an addition, in every commercially available
microprocessor.
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More interestingly, there are some variables that cannot be extracted from available
information, but that can be inferred as the results of some experiments from the processor.
In particular, a lot of parameters characterizing the model are unknown a priori, but can
be extracted by fitting the model for them. This is a large and widely used ecosystem of
techniques (of which the linear regression is one of the most used [4]), that yields statistical
correct results. An example can be the base power dissipated by the processor at idle,
when no calculation is taking place, or the cost of flipping a single bit in a certain data
path.

Depending on the variables that we are trying to find, an approach can be more effective
or efficient than another, as the examples we have made suggest. In researching the related
works on the topic, we can start from these observations to explore the current state of
the art on these approaches, evaluating how much information is needed for each one.

2.2.2. Ideal power estimation

A common starting point when studying power consumption is [26]. There, the authors
outline an idealized model for the energy consumed by a program:

EP =
∑
i

(Bi ·Ni) +
∑
i,j

(Oi,j ·Ni,j) +
∑
k

Ek (2.2.1)

where

• EP is the total energy cost of the program.

• for each instruction i, Bi is the base cost of i, that is a constant cost attributed at
each instruction, and Ni the number of times i gets executed.

• for each couple of consecutive instructions i and j, Oi,j is the circuit state overhead, a
term that summarize all the possible dispersions due to circuit switches, capacitances,
and in general the switching from one instruction to another. Ni,j is the number of
times that particular interleaving of instructions occurs.

• Ek is the energy consumed due to other inter instructions effects k. Examples of
this are cache misses and stalls in the CPU pipeline.

The usage of the term Oi,j is important, because it accounts for all the charge-discharge
cycles of the parasitic capacitances inside the microprocessor.

Note, however, that this model estimates the energy required by the program: since we
are studying the power consumption, we need to slightly refine it, by dividing by the
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total time elapsed. In doing this, the first term of the sum may be simplified: the energy
cost for each instruction can be expressed as Bi = BP

i ciTc, that is the product of the
power consumption, the number of clock cycles needed by the instruction, and the clock
period; similarly, the total elapsed time is T = c · Tc, the product of the total number of
clock cycles elapsed and the clock period; finally, the total number of clock cycles can be
expressed as the sum of all the clock cycles used by all the instructions, that is c =

∑
i ciNi.

Overall, the first term of the sum in Equation (2.2.1) can be expressed as∑
iBi ·Ni

T
=

∑
iB

P
i ciTc ·Ni

c · Tc

=

∑
i B

P
i ciTc ·Ni∑

i(ciNi) · Tc

=

∑
i B

P
i · ciNi∑
i ciNi

(2.2.2)

that is, a weighted mean where the clock cycles act as weights. The other terms express
costs related to the number of times a certain event happens during execution, so it is
difficult to express them as power consumptions, without deeply changing the formula. We
can simply compute them as the total energy over the total time, as in Equation (2.2.3),
or we can integrate them into the other terms. The latter solution has been employed
in [8], discussed in Section 2.2.5.

PP =
EP

T
=

∑
i(Bi ·Ni) +

∑
i,j(Oi,j ·Ni,j) +

∑
k Ek

T

=

∑
i B

P
i · ciNi∑
i ciNi

+
∑
i,j

Oi,j ·Ni,j

T
+
∑
k

Ek

T

(2.2.3)

This model is theoretically extremely precise, but practically useless on its own, since
to use it we need a way to accurately estimate all the parameters. This is the major
difficulty of the experimental analysis. In this model, for instance, the terms EP

k may
be particularly variable. In an ad-hoc created experiment, when all the parameters are
known (or reasonably averaged), the authors obtained an error of 0.26%; in a less ideal
setting, the error rose to around 3%. The authors also highlight some phenomena observed
from data: for instance, they note that power consumption is generally quite dependent
from the register allocation in the executed code. This suggests that computing these
determining factors may improve the accuracy of the model, which is the approach of
Section 2.2.3.
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2.2.3. Using functions of the code

To better expand the parameters used in the model equation 2.2.1, Lee et al. in [15] suppose
that the power consumption can be estimated by a linear model. In particular, they
assume the system under test is a black-box, and try to infer its behaviour by extracting
data in a stimulus-response approach. This does not mean that no knowledge about the
system is required: the model the authors suggest is dependent on some information about
the code (and in lesser part, the processor). This however is still an improvement, as we
shifted the source of knowledge from the processor (about which we usually know very
little) to the code it executes (which is on the other hand completely knowable, and even
controllable to an extent with compiler optimizations).

They focus their model on the processor pipeline. We can suppose the total energy E

required by a program is the sum of all the energies consumed in the various clock cycles
Ei. This term can be calculated as the sum of the energies consumed by all the stages of
the processor pipeline:

Ei =
∑
s∈S

es(Is(i), Is(i− 1)) (2.2.4)

where Is(i) is the instruction occupying pipeline stage s at clock cycle i, and es(X, Y )

is a function representing the power consumption of instruction X, when it is following
instruction Y . This model suggests the importance of analysing the instruction sequence as
couples of instructions, not single ones. This emphasizes the effect of the circuit switching
cost Oi,j in Section 2.2.2.

To define the function es(·, ·), we identify some known properties of the processor, from
which we extract the regression variables that constitute the core of the model [4]. As
an example, we may assume that the processor dissipate energy every time a logic gate
is activated (this is consistent with the modelling that couples every complementary
MOS (CMOS) gate with a parasitic capacitance). Then, we deduce that every bit asserted
in the binary instruction will activate some areas of the processor, thus increasing the
energy cost. As a result, we hypothesize to use as a predictor variable the binary weight
of the binary instruction, that is the number of 1s in the binary representation of the
instruction. This turns out to be a correct guess, so precise that it is possible to extract
sensitive information from the power absorbed by a processor [19].

The authors list a few possible variables:

• the instruction fetch address of the instruction. It may reflect the bus power
consumption and the cache hit rate.
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• the instruction bit encoding of the instruction. It affects the power consumption
related to the instruction register.

• some operand specifiers, like the register numbers or the immediate operand of
instructions. They have similar effects to the instruction bit encoding.

• the program variable values, which affect the state of the arithmetic-logical unit (ALU)
of the processor, and thus ultimately their consumption

Once defined the set V of model variables, the function e(·, ·) is defined as:

es(X, Y ) = BX
s +

∑
v∈V

fX
s (vX , vY ) (2.2.5)

where BX
s is the base cost for instruction X in pipeline stage s, vi is the variable v calculated

for instruction i, and fX
s is a suitable function expressing the power cost deriving from

the variables. The authors suggest the function

fX
s (vX , vY ) = Hv/X

s · h(vX , vY ) +W v/X
s · w(vX) (2.2.6)

where h(i, j) is the Hamming distance between numbers i and j expressed in binary, w(i) is
the binary weight of number i, while H

v/X
s and W

v/X
s are parameters to be fitted through

linear regression (specifically, the least square method).

This model is interesting for two reasons. First, it allows, in principle, to explore arbitrary
values of the variables v via ad-hoc written programs. Second, linear regression and the
ordinary least square (OLS) method are widely accepted tools, that benefit from a solid
set of analysis we can perform from it, like testing the validity of the used predictors using
hypothesis testing.

The results presented by the authors are very promising: the R2 coefficient of determina-
tion [4] of the resulting model is 0.9893, and the average relative error is around 2.5%,
with a maximum error of 6.33%.

2.2.4. The Dual Bit Type method

A completely different approach is proposed in [13], where the authors try to model a
power consumption score in a purely statistical approach.

The authors adopt the usual modelling for a digital logic gate, whose power consumption
is P = CV 2f , where C is the inevitable parasitic capacitance associated with the gate, f
is the frequency of the clock operating on the gate, and V is the voltage applied to its ends.
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This model holds when the gate is constantly switching its state. Since this realistically
never happens, the formula needs to be refined by adding a statistical correction factor.
The power of each gate is then calculated as P (0 → 1) · CV 2f , where P (0 → 1) is the 0

to 1 transition probability of the signal.

It is possible to adapt this concept to more complex architectural units. For instance,
capacitance of components like adders, subtracters, multiplexers, barrel shifters and
registers scale linearly with the number of bits of the component:

CT = Ceff ·N (2.2.7)

where Ceff is the capacitive coefficient (ideally, the capacity switched for each bit in the
module), and N the number of bits of the module.

Other components behave in a more complex manner. For instance, an estimate of the
power of an array multiplier may be P = CN2V 2f , where N is the dimension of the inputs
(again, a statistical correction is needed). Note the quadratic dependence on the input bits;
this however is not a problem for this analysis. Or, the component may be described using
several different capacitance terms: in such a case, we also need to use several coefficients
in (2.2.7). In practice, we can resort to a vector model:

CT = Ceff ·N (2.2.8)

where

Ceff =
[
C0 C1 · · · Cn

]
N =



N0

N1

...

Nn


(2.2.9)

For each subpart the component is made of, Ci indicates the capacitance of the subpart,
Ni the variable the corresponding capacitance is dependent on, and n is the number of
subparts. This way it is possible to manually tune the different number of subparts of the
model (provided we are able to identify them).

In theory, all the models for the various components can later be fitted to find the optimal
value for each C.

As we said, it is a widely accepted assumption that the power consumption of a processor
is also determined by the inputs applied [19]. This suggests that in order to have a precise
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power estimation we should take into consideration the input applied to the system. Opting
for the statistical point of view of the analysis, we can shift our focus to the statistical
distribution of such input. A naive approach to this can be assuming the input will be
distributed as a uniform white noise (UWN). This is extremely imprecise, and leads in
corner cases to errors up to 6543% [13].

This estimate is improved by the authors by noting that, in general, input to a system
is never a true UWN, but instead the most significant bits (MSBs) have lower switching
probabilities than the least significant bits (LSBs). The key proposed correction, called
the dual bit type method, analyse the switching activity of the input stream, and assign
different capacitances to different switching probabilities.

Then, to analyse the different behaviour in the input data, we can observe the regions
of bits that have different statistical distributions, and identify their boundaries (called
breakpoints). This analysis can be simple or complex, but as a first approximation the
authors suggest taking as breakpoints the values BP1 and BP0, obtained as

BP1 = log2 (|µ|+ 3σ) (2.2.10)

BP0 = log2 σ +∆BP0 (2.2.11)

∆BP0 = log2 (
√
1− ρ2 + |ρ|/8) (2.2.12)

where µ, σ and ρ have the usual statistical meanings of mean, variance and correlation,
referred to the input distribution.

Another consideration can be that the MSB of a signal is often a sign bit: this switches
with particular rules, and we are able to improve the model for it. Comprehensively, to
account for the different data types, we use one capacitance coefficient for each type of data
modelled. The uniform part of the signal (UU) may be represented with one coefficient,
since it is well described by a classic, UWN model. The sign part (SS), on the other
hand, exhibits four possible transitions, therefore it may be modelled using four different
capacitance coefficients (C++, C+−, C−+, C−−).

A last improvement the authors make is to model the various functions a single component
(like an ALU) can do by using different sets of coefficients. This in practice partitions the
input bits from another point of view, in operand bits and control bits.

All these coefficients can be found by fitting the model against a proper input dataset. To
generate that, the authors use an automatic pattern generation tool to produce inputs that
stimulate all possible data capacitance of the model. Finally, the least square regression
can be used to find the coefficients.
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The results are very good in the sense they have low error rates. However, correctly
modelling the various components requires an in depth knowledge of the internals of the
processor (this method has been described as “white box approach” [5] and “grey box
model” [21]).

2.2.5. Precise multi-threading processor estimation

If we have access to more information about a processor, we can further refine our model,
and craft an ad-hoc one that leverages the processor-specific information we have. Georgiou
et al. in [8] use a XMOS XS1-L “Xcore” processor, about which the authors know the
thread behaviour and other information. Specifically, the Xcore is a “time deterministic
multi-threaded architecture”. This means the authors know that the processor has a
four stage pipeline for all instructions, but also that the stalls due to the fetch of new
instructions can be known in advance [17]. The used model is:

Eprg = (Ps + Pdi) · Tidl +
∑
i∈prg

(
Ps + PiMNpO

Np

· 4 · Tclk

)
(2.2.13)

where
Np = min(Nt, 4) (2.2.14)

and

• Eprg is the energy consumed by the program

• Ps is the static power of the processor (consumed at idle)

• Pdi is the dynamic idle power

• Tidl is the idle time

• Pi is the dynamic power for each instruction

• O is a constant inter-instruction overhead, much similar to the circuit state switching
overhead Oi,j of Section 2.2.2

• MNp is a scaling factor accounting for the number of threads in the pipeline

• Np is the number of instructions in the pipeline

• Nt is the number of active threads

• Tclk is the clock period

Again, this model predicts the energy cost, but it can be modified to instead model power
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consumption:

Pprg = (Ps + Pdi) +
∑
i∈prg

(
Ps + PiMNpO

Np

)
(2.2.15)

The actual calculation of the power is slightly more delicate, and we will discuss its validity
in Section 3.1.3.

The results are mixed: on one hand, they are overall very promising, as the average
absolute error is about 3.2%. Moreover, the analysis done in the work are relevant both
at the ISA and the LLVM intermediate representation (LLVM-IR) level, and efficiently
predicts the energy savings due to code transformations. This can potentially enable
a cost-driven compiler optimization framework. On the other hand, some benchmarks
performed poorly, with error peaks of ≈ 10%.

Moreover, we must consider that this model does assumptions that may not be easily
adaptable to other processors. For instance, the inter-instruction overhead O is taken
as constant, which may not necessarily be the best approximation in all cases (although
it is scaled with respect to the number of instruction in the pipeline). Or, the dynamic
power of the instruction may depend on some characteristic of the code, as explained in
Section 2.2.3, more in some processors than in others: therefore not considering it in any
model may lead to errors for those devices that do show a dependency.

However, this approach achieved an high precision, and requires relatively little knowledge
about the processor internals compared to other models (like the model of equation (2.2.1)
or the one described in Section 2.2.4). We can therefore take inspiration from the power
model of equation (2.2.15), and adapt it to another processor with minor modifications.

2.3. Conclusions

Our ideal analysis of a new processor should

1. be processor-agnostic, meaning it could be theoretically applied to any general
purpose processor

2. not require any knowledge about the processor internals (or at least require as little
as possible)

3. fast and easy to be conducted, meaning new processors can be tuned in a relatively
fast cycle

None of these requirements in necessary to have a good estimate: however, their compli-
ance would allow the analysis to be realistically integrated into a widely used compiler
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development. The only practical requirement in such a case would be having access to a
physical example of the processor to be tested, and to a suitable measuring apparatus (we
describe ours in Sections 3.1.2 and 3.1.7). Requirements 1 and 2 allow the analysis of a
new processor to be straightforwardly conducted on the device, without having to refine
the model in an ad-hoc manner each time; requirement 3 allows such analyses to keep up
with the processor production and the development of compilers.

The approach of Section 2.2.2 is simple, but we need a way to estimate the parameters. In
any case, it provides a good general approach to what our model should be. To actually
conduct the estimate, we can take inspiration from different ideas from other approaches.
From the approach of Section 2.2.3 we can take the usage of arbitrary functions of the code
to provide more insight about the input we are using in the experiments, thus providing
more variables to perform the regression upon. From Section 2.2.5 we adopt the usage of
a multiplicative inter instruction overhead factor.

The dual bit type method of Section 2.2.4 requires a slightly deeper analysis. While its
results provided very low error, it must be noted that the experiments took advantage
of some knowledge about the internals of the device under test (DUT). This does not
necessarily break requirement 2, but we can expect the precision of the method would
decrease if applied to a general “one size fits all” processor model. A possible solution
worth mentioning is that we can differentiate our model to provide a small number of
model classes. In that way a new processor can be fitted using all the possible models,
and then the best performing one can be chosen (we can assume its goodness is a sign
of closeness of the model to the reality). However, we preferred to proceed with a single
model, leaving this possibility as a future work.

Moreover, the dual bit type analysis is more complicated than plain OLS, as it requires
doing an ad-hoc part of model construction based on the input structure. This partially
breaks requirement 3 and 1. However, we can adopt from it various insights about the
structure we can highlight in the input code: for instance, we can expect that various
components of the processor will contribute with different amounts to the total, predict
what these components are, and detect their usage using the functions of Section 2.2.3.

In Table 2.2 we show a summary of the analysed works. Since the models (2.2.4) and
(2.2.15) are those requiring the littlest knowledge about the processor internals, we chose
them as starting point for our model. It is worth noting that while they provide good results,
they also provide a quite high experimental difficulty, which may make the experiments
difficult and yield to suboptimal results.
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3| Power model construction

As noted in Section 2.3, we need now to design a power model starting from the work
of [8]. Our analysis was feedback driven, in the sense that while taking measurements,
the insights observed in the measures are translated to improvements to be applied to the
model. We show the major components of our oracle.

3.1. Experimental components

3.1.1. The processor

Since our analysis aims at devising a profiling method applicable to the most large set of
processors (ideally, all of them), the first step is to choose a processor to use as example,
that is, our DUT. We resorted to the STMicroelectronics™ microcontroller unit (MCU)
STM32F407VGT6.a It is part of the ARM® Cortex®-M4 processor family, is a 32 bit
architecture, runs the Armv7E-M ISA, meaning it supports Thumb instructions, has an
hardware floating point unit (FPU) [25], and is easily programmable by end users using
STMicroelectronics’ tools. The MCU is hosted on a STM32 Discovery kit board.b

3.1.2. The measurement tool

In principle, to measure the power flowing into the DUT we need a way to measure both
the voltage and the current between two points of a circuit. The former can be relaxed by
observing that a digital processor usually works under a very specific voltage (usually 3.3V

or 5V), however, knowing the exact tension drop leads to more accurate measurements,
as we can keep track of voltage fluctuations in the circuit. We used the Qoitech™ Otii Arc
Pro, an easy to use digital multimeter capable of measuring time varying tension with a
decent precision, as showed in Table 3.1. Since the device actually measures only tension,
the current reading is obtained by using a shunt resistor, as explained in Section 3.1.7.
The Otii Arc Pro comes with a graphical user interface (GUI) program delivered by the

asee https://www.st.com/en/microcontrollers-microprocessors/stm32f407vg.html
bsee https://www.st.com/en/evaluation-tools/stm32f4discovery.html

https://www.st.com/en/microcontrollers-microprocessors/stm32f407vg.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
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Table 3.1: Precision of the physical quantities measured by the Otii Arc Pro.

Physical quantity Precision

Time (s) 1ms

Current (A) 0.1 µA
Voltage (V) 1mV

manufacturer, from which it is possible to start and stop a recording while monitoring the
plot of the physical quantities of interest on the screen. While recording, the Otii Arc Pro
measures the tension at its probes with a sampling frequency of 1 kHz. From the GUI, it
is then possible to export such data in a CSV file.

As shown in Section 3.1.5, to produce an accurate model a huge training dataset is required.
The Otii Arc Pro allows to take measurements only using the GUI: this can be a problem
as the time to save a measurement using it will considerably be slower than using a
command line tool. The straightforward solution is to use a software that allows this kind
of measurements. The Otii GUI offer such an extension, via an extra commercial product.
However, to mitigate this disadvantage without resorting to a commercial solution, we
chose to automate the GUI measurement process using a graphical automation tool. Since
the machine used for this work was running the X11 protocol, we picked the xdotool

software,c which is the de-facto standard for this protocol. The script simply replays all
the steps that would normally need to be performed manually to measure and save the
power measure. To get a better reading, we recorded each measure for 3 s, to then obtain
an average value. The total measurement process takes around 20 s.

3.1.3. The tentative mathematical model

The data we collect with the measurement apparatus are meant to be used to train a
mathematical model. From the conclusions of Section 2.3 we can take inspiration from
the equation (2.2.15), here reported for convenience:

Pprg = (Ps + Pdi) +
∑
i∈prg

(
Ps + PiMNpO

Np

)
(2.2.15 recall)

However, as we highlighted in Section 2.2.3, we also want to benefit from the linear
regression theory that can be applied to such a model. In particular, we can suppose that
our model can be represented by a linear model, where we can predict the power consumed

csee https://github.com/jordansissel/xdotool

https://github.com/jordansissel/xdotool
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by executing a particular instruction i by multiplying some variables about the instruction
with some (now unknown) coefficients. For instance, to predict a particular instruction
power, we can observe that

P = β0 + β1 x1 + β2 x2 + · · ·+ βn xn + ϵ (3.1.1)

where P is the power consumed by the instruction, {β1, β2, · · · , βn} are the unknown
parameters of the regression, β0 is the constant cost associated with the instruction, and ϵ

is the error term. Then, our prediction will be

P̂ = β0 + β1 x1 + β2 x2 + · · ·+ βn xn

= P − ϵ

≈ P

(3.1.2)

However, this poses the question of what variables should we consider. For instance,
following the discussion of Section 2.2.3, we can imagine considering the binary weight of
an instruction as variable (xw). The model then requires a coefficient to be multiplied to it
(βw), representing the amount of power dissipated for each unary increment of the binary
weight for the input instruction. The problem is that, in general, we have no reason to
believe this coefficient is equal for all the instruction of the ISA. Therefore, we need a
way to express this variability in the model, that is, we need a way to differentiate which
parameter to use.

This can be addressed by considering the instruction i as a variable, and introducing an
indicatory (or “dummy”) variable for each instruction [4]:

Ii =

1 if the current instruction is i

0 otherwise
(3.1.3)

Then, the model becomes

P̂i =I1 · (β10 + β11 x11 + β12 x12 + · · ·+ β1n x1n) +

I2 · (β20 + β21 x21 + β22 x22 + · · ·+ β2n x2n) +

...

Im · (βm0 + βm1 xm1 + βm2 xm2 + · · ·+ βmn xmn)

(3.1.4)

Another equivalent description of this is that we can identify one equation for every
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instruction i of our ISA:

P̂i = βi0 + βi1 xi1 + βi2 xi2 + · · ·+ βin xin (3.1.5)

so that in the end we have

P̂i =



β10 + β11 x11 + β12 x12 + · · ·+ β1n x1n if instruction is n°1

β20 + β21 x21 + β22 x22 + · · ·+ β2n x2n if instruction is n°2

β30 + β31 x31 + β32 x32 + · · ·+ β3n x3n if instruction is n°3
...

(3.1.6)

From the point of view of linear regression, this is an example of the usage of a qualitative
variable (the current instruction) in the linear model, accounting for the interaction effect
of the qualitative variable with the quantitative ones. Note that in the end some variables
gets multiplied together. For instance, expanding the first term of equation (3.1.4) we get

β10 · I1 + β11 · I1 x11 + β12 · I1 x12 + · · ·+ β1n · I1 x1n (3.1.7)

This however is not a problem, as to perform linear regression we only need the model to be
linear in the coefficients βij , not in the variables, which can even be replaced by arbitrarily
complex functions. The usage of qualitative variables is such a common situation that
many data analysis software packages include a way to automatically deal with them,
without manipulating manually the variables.

3.1.4. The measurement workflow

The entire measurement workflow is illustrated in Figure 3.1.1. A rectangle represents an
artifact (a source file or the physical board), while an oval represents a program (whether a
binary one or a script). Since we collected the measurements, wrote the data analysis code,
and redacted the work using the GNU Emacs editor [22], we wrote the main orchestrating
scripts in Emacs Lisp [16].

The overall process is handled by the Emacs Lisp driver, that invokes the other external
programs, script and functions. The code to be flashed onto the STM32 board is obtained
from the official STMicroelectronics editor, which provides a firmware and a C template.
This in turn contains a main function with an infinite loop, and offers various injection
points in which add the user code. This is consistent with our idea of measuring the power
consumption (expecting an embedded device to run indefinitely), and allows us to measure
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Figure 3.1.1: Measurement workflow.
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the single instructions. The provided C template is modified by an Emacs Lisp function
and the instruction to be tested is injected in the appropriate place (such instruction is
generated with the process described in Section 3.1.5). The resulting C file is compiled and
linked with the STMicroelectronics firmware, composed of C and assembly files. In this
work we used GCC [23], as it is free software and it is distributed in numerous toolchains,
one of which specific to compile ARM code to bare metal. The compiler outputs a binary
image, that can be loaded onto the board with the st-flash program (also provided by
STMicroelectronics). To do so, the board is connected to a computer using a USB cable.
Then, the xdotool script is executed, which in turn drives the Otii GUI in taking the
measurement. The result is a CSV file, whose name is a mangled version of the instruction
just measured. Then, another Emacs Lisp function cleans the C main file to restore it to
the previous state, so that the following instruction can be injected, and the process is
repeated as needed.

The net result is a driver program that generates the suite of instructions to be measured,
injects the code, compiles the project, flashes it onto the board, measures the power
consumption, and then repeats the process, until the suite is finished.

Since we would like to measure the power consumed by the processor due to a single
instruction, and nothing else, we would like to isolate the effects of the instruction from the
other operations performed by the processor. This is not entirely possible, as the firmware
provided is effectively a little operating system, dealing with memory events and other
overhead logic. However, we can assume the overhead computation will be performed
during testing as during the normal functioning, so we can factor out its contribution, that
will be absorbed into the constant term of the linear model. This is not an exact analysis,
as the memory management logic executed will depend on the user code running, but we
can ignore this difference to provide at least a first prototype of the power model.

To assess the impact of a single instruction, a common idea is to execute it in an infinite
loop. Jumping at the start of the loop requires some overhead computation that pollutes
the measure, so a solution can be to not use a single instruction executed in loop, but
actually a streak of identical instructions. A too long streak, on the other hand, can
trigger some memory events such as cache misses. To mitigate this effect, a rule of thumb
is to produce streaks of 200 instructions [26]. Since we need to inject ARM assembly code
into a C template, we used the __asm__ directive, qualified as volatile to prevent the
compiler to optimize it away. Moreover, we can place our injected instruction into the
.rept 200 <...> .endr directive, to automatically repeat the instruction 200 times.

A thing worthy to be noted is the extraction of the binary encoding of the instructions.
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Given a particular ARM instruction, it is theoretically always possible to recreate its
binary encoding, for instance using an assembler. In this work we did so by using the
GNU Assembler (as) [6] when we needed to retrieve an encoding of a new instruction (see
Listing B.1 at page 90). However, when collecting data for the model, we can easily find
the encoding for the instructions we are testing, as we can scan the binary file written to
the board for any instruction repeated around 200 times. Our code reads that encoding
and saves it for caching purposes.

3.1.5. The train dataset generation

In order to fit the linear model, we need data about the input-output (or variable-response)
behaviour. When doing a simple linear regression, we would need a so-called train dataset
of points (x, P ), where x is the input (or explanatory) variable, and P is the power output,
measured with the Otii Arc Pro. In this case however we are performing multiple linear
regression, and our points are n+ 1 dimensional, where n is the number of variables we
have been able to extract from the code run on the board: (x1, x2, . . . , xn, P ).

The first question to ask is how many points are we going to take. Theoretically speaking,
the more points we have, the better the prediction is, so we can aim to test each instruction;
however, simple calculations show this is not possible. We suppose we need to profile the
add instruction, i.e. the instruction that adds two binary numbers and stores the result
in a register. This instruction accepts three arguments: the destination register, the first
source register, and a flexible second operand, that may be a register or an immediate
value. The ISA exposes up to 11 general purpose registers, and the upper limit of an
immediate integer depends on the mode of the ISA (Thumb or ARM), but for simplicity
we can limit ourselves to 255. Moreover, the operand can be shifted with some specific
commands: asr, lsl, lsr and ror all accepts as argument the number of bits to shift by,
in the range [1, 31]; rrx has a single meaning.

Summing up, many instructions in the ARM ISA accept 11 possibilities as destination
register, 11 possibilities as first source register, and 255 + 11 possibilities for the second
operand (again, this is subject to differences regarding the mode of the ISA, but for
simplicity we are ignoring this detail as the overall calculation will not primarily depend
on it). In turn, each second operand may be manipulated by 4 · 31 + 1 possibilities. In
total, to completely test the add instruction we need to explore

11 · 11 · (255 + 11) · (4 · 31 + 1) = 11 · 11 · 266 · 125 = 4023250

data points. Our experimental setup, in the end, required around 20 s to perform a
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single measurement, so the amount of time required is 4023250 · 20 s = 80 465 000 s,
roughly 2.5 years. The ARMv7E-M ISA counts (depending on what can be considered a
different instruction) around 242 instructions, easily showing that a complete exploration
is prohibited.

Another way to see why it is necessary to choose a subset of data points to measure is to
observe that ARM instructions are encoded as 16 and 32 bit words. Not all combinations
of bits are valid instructions, but we can assume as reasonable upper bounds of the testable
number of instructions the values 216 and 232, which again, accepting the measurement
time of 20 s, lead to respectively around 15 days and 2762 years.

What we did in this work is to select a subset of each relevant feature of the ISA instructions,
so to reduce the magnitude of each factor making up the total of test cases. We can, for
this, choose uniformly spaced out sample values that cover up the operand space. This in
theory also collects data about various functions of the code that we are not considering
right now. For instance, expecting to include the binary weight of the instruction in the
linear model, by choosing a skip step that is not a power of 2 we can actually produce
operand values with various binary weights. In Figure 3.1.2 we can see that this uniform
sampling produces good results. The littler the step, the more data we have, and the
more we get a normal distributed density. The thicker lines represent step values of 5 and
10, which greatly reduce the amount of data we get (corresponding to the area under the
curve), but we still explore almost all the weight space.

Figure 3.1.2: Binary weight densities for various operand exploration steps.
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With this reasoning and sticking to the add example, we can then test just 3 registers for
the register operand, and up to 20 values for the immediate operand. The shift feature
can be reduced too, for instance by testing 6 values. Now the calculation becomes

3 · 3 · (20 + 3) · (4 · 6 + 1) · 20 s = 9 · 23 · 25 · 20 s ≈ 29 hours

This is a great improvement, but it still requires too much time.

Another way we can cut measurement time is by supposing that the shift contribution to
the power consumption will be independent of the instruction considered, but instead it
simply increments the power for each bit shifted. This way, the effect of the shift must be
measured only once, and then the time required for each instruction reduces to

3 · 3 · (20 + 3) · 20 s = 9 · 23 · 20 s ≈ 1.5 hours

We explain later how this is implemented in the actual data analysis code, however, for
the purpose of the theoretical linear regression, this corresponds to modifying our model
like (commas added for clarity):

P̂i =I1 · (β1,0 + β1,1 x1,1 + β1,2 x1,2 + · · ·+ β1,n−1 x1,n−1) +

I2 · (β2,0 + β2,1 x2,1 + β2,2 x2,2 + · · ·+ β2,n−1 x2,n−1) +

...

Im · (βm,0 + βm,1 xm,1 + βm,2 xm,2 + · · ·+ βm,n−1 xm,n−1) +

βs · xs

(3.1.8)

where xs is the amount of bits shifted, and βs is its corresponding coefficient.

The complete code to produce the test instructions is described in Appendix A.

3.1.6. Memory instructions

Particular care needs to be taken when measuring the instructions acting on memory. The
board may implement memory protection: for instance, if we execute the pop instruction in
an infinite loop, reading from progressively changing areas of the stack, we will eventually
end it and overflow in reading in prohibited regions of memory. Normally operating systems
specifically prevent this; however in our analysis this is precisely the kind of behaviour we
would wish for, as it would allow us to test the instruction with arbitrary arguments.

To mitigate this problem, if present, there are three possibilities. First, one could inspect
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the application binary interface (ABI) of the code running, and manually write test cases
that bypass the problem. Second, we could inspect the firmware to deactivate the memory
protection. Third, it may be possible to bypass the firmware completely, and to inject
specific binary words into the processor to be executed as instructions. This requires
to know the working of the processor, and possibly using an field programmable gate
array (FPGA) as a driver. However, the latter two workarounds are not guaranteed to
work, as we do not know whether the board implements the protection using software or
hardware components (that may not be disabled by modifying the firmware). These were
anyway outside of our scope: we limited ourselves to prepare the memory by pushing onto
the stack, and then executing streaks of pop or push instructions while manipulating the
stack pointer.

3.1.7. Electrical wiring

The STM32 board exposes two pins (C22 and Idd) on the line carrying power to the
processor. Normally they are short-circuited with a jumper, but it is easy to interpose a
measurement apparatus directly there, measuring the current flowing in the CPU. Since
the Otii Arc Pro does not directly act as an ammeter, we connected a shunt resistance
between the two pins, using the corresponding contacts on the bottom side of the board.
The value of such resistance is arbitrary, and can be set into the Otii GUI. This way, the
program will measure the voltage drop and calculate the current flowing, using Ohm’s
law V = R · I ⇒ I = V/R. In this work, we used three equal (1.00 ± 0.05)Ω resistors
connected in parallel, acting as an equivalent resistance of 0.33Ω.

Additionally, the board provides also a LED indicating communication with the PC
connected to it. During normal functioning, the LED blinks at regular intervals, causing a
square wave in the measured current flow. That effect can be filtered out digitally or by
unsoldering the LED: here, we chose the latter method.

The shunt voltage drop is measured at the ADC pins of the Otii Arc Pro; moreover, the
electrical ground of the board and the ground of the Arc (GND) have been connected.

This setup however was quite susceptible to electromagnetic disturbances, like the ones
produced by the lighting fixtures, and to parasitic capacities. The current flow can be seen
to sensibly change when turning on the lights in the measurement room, or when moving
close an hand. To minimize this effect, we placed both the board and the Arc in a box
covered in aluminium foil, which acts as a Faraday shield. Moreover, the board ground is
short-circuited to the box, and that in turn was connected to the fixture electrical ground.
This successfully prevented the measures from being contaminated by electromagnetic
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(a) Unshielded signal. (b) Unshielded signal amplitude spectrum.

(c) Shielded signal. (d) Shielded signal amplitude spectrum.

Figure 3.1.3: Effect of the Faraday shield from the 50Hz disturbance.
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noise, namely the 50Hz disturbance coming from the electrical installation. In Figure 3.1.3
we can see the two main effects of the shielding. First, the power consumption presents a
little constant offset, and second, the periodic behaviour of the electric supply is practically
neutralized. The spectrum of Figure 3.1.3d still presents some noise, but it is hugely lower
than the unshielded one.

Arc Board

ADC+ C22

Rshunt = 0.33Ω

Idd
ADC-

load

AGND

Faraday’s boxPower supply

Figure 3.1.4: Circuit scheme of the measurement setup.

In Figure 3.1.4 it is shown the circuit schematic of all the electrical connection of the
measurement apparatus. The generic bipole “load” is an abstraction for the CPU and
all the other silicon components powered through that wire. We are only interested in
the CPU consumption, but again we can imagine the overhead component power to be
absorbed into the constant term of the linear regression. For simplicity, the power supplies
of the various components are not shown; however, both the board and the Otii Arc
Pro draw power from the computer to which they are connected via two USB cables.
Such cables serve the dual purpose of transmitting energy and data, as they are used by
the board and the Arc to respectively load the code in memory and send the electrical
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measurements to the GUI.

In theory, the board can be powered also using an external 3V or 5V power source. This
voltage could have been provided by the Arc; however, doing so would have meant to cut
the power and connect the data USB cable between each measurement, which is time
consuming and error prone, so in this work we chose to power it directly using the USB
cable.

3.1.8. Data analysis

Eventually, after collecting all the data points, we need to use them to produce the
linear model of the processor. In this work, we chose to process the data using the Julia
programming language [2], as it is fast and easy to code in. Moreover, Julia benefits from
a relatively rich ecosystem of libraries, and we used them to perform the data analysis
tasks.

The first step is to collect all the data points in a unified way. We decided to use the
DataFrames package, which provides a table-like data structure to store multidimensional
data of heterogeneous types. The CSV files outputted by the Otii GUI have four fields:
the readings of time, current, voltage and energy. The energy is a convenience measure
computed by the program: we could use that or compute the power starting from current
and tension. We chose the latter: for each CSV file, we multiplied point-wise the current
and the voltage, to obtain a trace of instantaneous powers, as per the known relation
P = V · I. Then, we averaged the value to obtain a single power measure for each profiled
instruction. It was easy to store the standard deviation of the instantaneous powers too:
however, this turned out to be a very small value (the maximum ratio of the standard
deviation to the power measure was 1.11%), so we chose to not insert it into the successive
calculations.

Next, we decorated each data point with a series of additional data, the variables of the
linear regression. We extracted such variables using specific functions of the instruction
under test, as suggested in Section 2.2.3. To choose which functions to compute, we
combined some ideas from the analysed works with the insights shown by observing the
power data plotted. This is an heuristic approach: by extracting more variables from the
instructions, techniques of machine learning could notice new relationships [20]. This is
left as future work. As an example, we observed that generally the instructions that have
the destination register equal to one of the source register consumed a different amount of
power than those who do not. A possible explanation for this is that when this happens the
processor activates its internal forwarding paths, in order to not waste pipeline clock cycles:
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a side effect is that different area of the processor are powered up [18]. Therefore, we
decorated each instruction with a boolean value, indicating whether or not the destination
register was equal to one of the source register. Clearly, this distinction makes sense only
for those instructions who have a source and a destination register: as a counterexample,
the instruction pop accepts a single register as parameter, and therefore does not exhibit
this behaviour. This means that this variable has to be correlated with the instruction
under test, as shown in Equation (3.1.4).

The code that constructs the DataFrame is shown in Appendix B. The characteristic of
the code that will end up being regression variables are extracted using specific functions
of the instruction under test. The functions are explained together with the code, while
the corresponding characteristics are better explained in the data exploration phase in
Section 4.1.1.

The resulting DataFrame is an 12423×14 table, upon which we can perform the regression.
We chose to use the GLM package,d as it allows using qualitative explanatory variables,
and to correlate them easily. The key point of constructing the model is to provide the
formula explaining how the data relate. Listing 3.1 shows how the formula object is
constructed, and how the Julia console pretty prints it. The explanatory variables are a
constant term, the mnemonic opcode (this is equivalent to say that there is a uniform
idle consumption, plus a base consumption for each instruction type), the usage of the “s”
flag, the usage of conditional execution, the possible coincidence between destination and
source registers, the presence of a shift operation and its amount of bits, and the presence
of an immediate operand. We voluntarily left out the immediate operand amount, since
in the first phases of data exploration it tended to have negative coefficients that led to
significative errors in the predictions. A few variables are correlated with each other, as
we expect that the impact of these characteristic of the instructions is not constant, but
varies depending on which instruction mnemonic has them.

The model can be fitted using the data from the DataFrame. The result is a data structure
with lots of coefficients, as the categorical variable mnemonic expands into a series of n− 1

dummy variables, with n being the number of instructions profiled (we analysed 57 of
them). When the model did not contain any data for a particular combination of variables,
it assigns to the coefficient the value NaN (“not a number”, according to the IEEE standard
for 64 bits floating point numbers [10], which Julia uses). This means that if we later
try to predict the power of an instruction of which at least one coefficient is NaN, the
program refuses to do it, as the result would probably be meaningless. We chose to follow

dhttps://juliastats.org/GLM.jl/stable/

https://juliastats.org/GLM.jl/stable/
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julia> formula = Term(mean_power_sym) ~ ConstantTerm(1) +
(Term(:mnemonic) & ConstantTerm(1)) * (

Term(apsr_sym) + Term(conditional_sym) + Term(dest_source_eq_sym) +
Term(barrel_shift_sym) * Term(has_barrel_shift_sym) +
Term(has_immediate_sym) + Term(binary_weight_sym)

)
FormulaTerm
Response:

Base power mean (W)(unknown)
Predictors:

1
mnemonic(unknown)
APSR (s flag)(unknown)
Is conditional(unknown)
Dest reg == source reg(unknown)
Barrel shift amount(unknown)
Has barrel shift(unknown)
Has immediate operand(unknown)
Binary weight(unknown)
Barrel shift amount(unknown) & Has barrel shift(unknown)
mnemonic(unknown) & APSR (s flag)(unknown)
mnemonic(unknown) & Is conditional(unknown)
mnemonic(unknown) & Dest reg == source reg(unknown)
mnemonic(unknown) & Barrel shift amount(unknown)
mnemonic(unknown) & Has barrel shift(unknown)
mnemonic(unknown) & Has immediate operand(unknown)
mnemonic(unknown) & Binary weight(unknown)
mnemonic(unknown) & Barrel shift amount(unknown) & Has barrel shift(unknown)

Listing 3.1: Linear regression model formula.
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julia> formula = Term(mean_power_sym) ~ ConstantTerm(1) +
(Term(:mnemonic) &

(ConstantTerm(1) + Term(binary_weight_sym) +
Term(dest_source_eq_sym))) +

(
Term(apsr_sym) + Term(conditional_sym) +

Term(barrel_shift_sym) * Term(has_barrel_shift_sym)
+ Term(has_immediate_sym)

)
FormulaTerm
Response:

Base power mean (W)(unknown)
Predictors:

1
mnemonic(unknown)
APSR (s flag)(unknown)
Is conditional(unknown)
Barrel shift amount(unknown)
Has barrel shift(unknown)
Has immediate operand(unknown)
mnemonic(unknown) & Binary weight(unknown)
mnemonic(unknown) & Dest reg == source reg(unknown)
Barrel shift amount(unknown) & Has barrel shift(unknown)

Listing 3.2: Reduced linear regression model formula.

a different approach: when the model was not trained for that kind of instruction, that
means we are not sure of the precise effect of that particular combination of variables.
However, we can speculate that the power can be approximated by a simpler model, for
instance by not considering the effect of the correlated mnemonic. In this model, we kept
some variables (like the presence of the “s” flag or the shift amount) uncorrelated, so that
we can find a coefficient for them that is applicable to all possible instructions, even with
a loss of precision. We kept the correlation with the mnemonic the binary weight and the
forwarding path activation, as shown in Listing 3.2.

Even in the reduced model there are a few coefficients that are equal to NaN. To solve the
problem, we detect those instruction that fail for both models and assign a constant power
cost to them. Such constant is calculated by first averaging all the power measurement we
have for each instruction mnemonic, then by averaging these mean values. In this way we
produce the equivalent of a weighted sum where all the instructions weight equally. We
chose to do so because some instructions are tested more than others, in a ratio that is
usually not equal to the proportion in which the instructions can be observed in a typical
program produced by a compiler. When measuring the instructions, some effects have
been measured only for certain instructions: for instance, the shift operation of the second
operand has been extensively tested for the add instruction, since it is one of the easiest to
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write tests for, and such bias would otherwise end up in the constant computation. The
exact solution would have been to test each instruction, with each combination of effects,
but as we argued in Section 3.1.5, this is practically unfeasible. By assigning a uniform
weight we absorb the differences due to this limitation. A future improvement is to scan
the program under test by the oracle, profile the frequencies of each instruction, and
compute the constant cost by that. This is still an approximation, as the exact proportion
of the executed instructions is unknown until runtime, but we expect it to be a better
approximation.

3.1.9. Instruction interleaving

Now we can produce an oracle that is able to receive as input a string containing an
instruction, invoke on it the auxiliary functions used to decorate the data point (shown in
Appendix B at page 89), and then to pass the resulting vector of values to the linear model
to produce the power estimate. However, such estimate is relative to an instantaneous power
of a single instruction: in a real program, instructions of different types are interleaved.
To estimate the power consumption of the entire program, we can suppose to compute it
by dividing the energy consumed by the program by the time the program has been run:

PP =
EP

TP

(3.1.9)

In turn, the energy consumed is the sum of the power consumed by each instruction,
multiplied by the time the instruction has been in the processor:

EP =

Ni∑
i=0

Pi · Ti (3.1.10)

where Pi is the power consumed by instruction i, Ti is the time the instruction stays
in the processor pipeline, and Ni is the number of instructions making up the program.
Furthermore, Ti can be seen as the product of the number of clock cycles instruction takes
(ci) and the clock period (∆t):

Ti = ci ·∆t (3.1.11)

Calling Nc the total number of clock cycles required by the program, we similarly observe
that TP = Nc ·∆t. We can now simplify the computation of the power of the program as

PP =

∑Ni

i=0 Pi · ci ·∆t

Nc ·∆t
=

∆t ·
∑Ni

i=0 Pi · ci
Nc ·∆t

=

∑nc

i=0 Pi · ci
Nc

(3.1.12)
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that is, the mean of the sequence of instruction powers, weighted with the instruction
clock cycles. Note that in general the number of clock cycles for different instructions will
be different; for instance, for the Cortex-M4 processor, an add instruction takes 1 clock
cycle, but a div instruction takes up to 12 cycles.

These data can usually be found on the processor programmer’s manual. For the Cortex-
M4, both the clock cycles for the integere and floating pointf instructions are provided.
Such information was adapted into a Julia data structure (specifically a Dictionary, an
associative array).

In Listing C.1 of Appendix C.1 it is shown the overall function predict_instruction,
that receives as input a DataFrame consisting of a single row, representing the decorated
instruction, and outputs the tuple (Pi, ci), i.e. the instantaneous power for that instruction
and the number of clock cycles it requires.

In Equation (2.2.15) the authors introduced a constant multiplicative overhead O to model
the dissipated energy due to the switching activity of the logic gates of the processor. In
the cited work the authors focus themselves on the number of active threads in a given
time instant, instead of the clock cycles. We have various possibilities to adapt this idea
in our model. We can:

1. add a constant multiplicative factor to the final instruction power estimates

2. add a constant multiplicative factor to the instruction instantaneous power (thus, it
will be later scaled by the clock cycles taken by the instruction)

3. add a constant additive factor

4. use a non-constant factor

Approach 1 in our model is equivalent to scaling the final estimate of the entire program,
so it is of no use in capturing the inter-instruction behaviour. Comparing approaches 2, 3
and 4, data show that modelling the inter instruction overhead with a second linear model
leads to better results. In practice, we use the pair of instruction (in, in+1) (decorated with
the shown metadata) to build a linear regression model that predicts, for a new couple of
instructions, how much will it be the inter-instruction multiplicative overhead.

esee https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/
Instruction-set-summary/Cortex-M4-instructions

fsee https://developer.arm.com/documentation/ddi0439/b/BEHJADED

https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Cortex-M4-instructions
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Cortex-M4-instructions
https://developer.arm.com/documentation/ddi0439/b/BEHJADED
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In the end, our model becomes

Pprg =

∑
i∈prg(Pi ·Oi,i+1 · ci)∑

i∈prg ci

where the values Pi (the power of the single instruction i) and Oi,i+1 (the multiplicative
overhead factor between instructions i andi+ 1) are predicted with the linear models.

To collect the data for this model, we slightly adapted the code used to measure the single
instructions. The resulting code allows us to call

(instruction-cartesian-product "add r0, r0, r%1 \\n\\t sub r0, r0, %2"

(list (parse-range "0:50:50" 1)

(parse-range "0:10:30" 2)))

yielding

add r0, r0, r0 \n\t sub r0, r0, 0

add r0, r0, r0 \n\t sub r0, r0, 10

add r0, r0, r0 \n\t sub r0, r0, 20

add r0, r0, r0 \n\t sub r0, r0, 30

add r0, r0, r50 \n\t sub r0, r0, 0

add r0, r0, r50 \n\t sub r0, r0, 10

add r0, r0, r50 \n\t sub r0, r0, 20

add r0, r0, r50 \n\t sub r0, r0, 30

The injected instructions are recognized by the C compiler as separate thanks to the escape
sequence “\n” (the “\t” is by convention), so they assemble to a streak of alternating
instructions. The resulting CSV file is then saved in a different directory, so that Julia can
use the right dataset for the two models.

Auxiliary code is added to recognize the two instructions that made up the double data
point, so that the metadata functions can be called on each half separately. Such functions
are the same of the single case, but the formula for the regression is modified, as shown
in Listing 3.3. We chose here too to implement two models: one more specific used as
default, and one more generic used as backup in case the first was not trained for the
incoming instructions.

The function doing the prediction for a complete trace is shown in Listing C.2 of Ap-
pendix C.2.
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julia> basic_formula = @formula(scale_factor ~ 1 + avg_power_clean *
(hamming_distances + first_weight + second_weight))

FormulaTerm
Response:

scale_factor(unknown)
Predictors:

1
avg_power_clean(unknown)
hamming_distances(unknown)
first_weight(unknown)
second_weight(unknown)
avg_power_clean(unknown) & hamming_distances(unknown)
avg_power_clean(unknown) & first_weight(unknown)
avg_power_clean(unknown) & second_weight(unknown)

julia> advanced_formula = @formula(scale_factor ~ 1 + avg_power_clean *
(hamming_distances +

first_weight + second_weight
+ first_mnemonic + second_mnemonic

))
FormulaTerm
Response:

scale_factor(unknown)
Predictors:

1
avg_power_clean(unknown)
hamming_distances(unknown)
first_weight(unknown)
second_weight(unknown)
first_mnemonic(unknown)
second_mnemonic(unknown)
avg_power_clean(unknown) & hamming_distances(unknown)
avg_power_clean(unknown) & first_weight(unknown)
avg_power_clean(unknown) & second_weight(unknown)
avg_power_clean(unknown) & first_mnemonic(unknown)
avg_power_clean(unknown) & second_mnemonic(unknown)

Listing 3.3: Formulas for the inter instruction overhead linear model.
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3.1.10. Trace selection

The last thing to consider is which instructions made up the program we need to estimate.
This is a not trivial question, as it means to predict which instruction will be executed
on the physical processor. In general, this is only known at run time: the emblematic
example is an if clause whose condition is determined by user input. This is usually not
the case for an embedded device, which is programmed to do one job in loop, usually
with indirect interaction with the user. However, our analysis aims to be as general as
possible, and even for embedded applications this problem may be undecidable until the
real execution. We have therefore two possibilities: either we set up a test environment
in which the application may run deterministically, or we simply don’t try to predict the
exact instruction sequence.

In the former case we can suppose to slightly modify the application, so that it no longer
depends on the user or on random events, and execute it in a corresponding emulation
environment to obtain a sequence of all the instructions executed. This is theoretically
possible, but it has numerous drawbacks. First, we need an emulation environment
corresponding to the processor under test, potentially supporting the guest operating
system (OS) and the device peripherals. In this work we used the GNU project debugger
(GDB) [24] and a modified version of QEMU [1] which works, but in general the support
for ARM processors and bare metal application is extremely lacking. This is due to the fact
that in general these environments are not required to be simulated: while this is generally
true, it means that for lots of environments it would be needed to write a custom simulator
to obtain the application trace. Since we would like to devise a method that requires the
littlest intervention from the user, this is equivalent to say that some processors will not
be testable until they are integrated in a free or open source tool like QEMU. Moreover,
the profiled trace will not necessarily be the same of the actual application, so we may
end up having a precise trace of a different application.

The remaining case is the one of not predicting the trace at all. What we can do in this
case is to profile the source code, supposing each instruction will be executed exactly
once. The underlying hypothesis is that a single basic block will either not be run or it
will be run entirely. This means that when performing optimizations we can say that
assigning a cost to the two versions of the basic block by looking at the instructions will
probably reflect the actual power consumption. In this work we implemented both the
techniques, but we would choose the latter as a default implementation in an hypothetical
power-driven optimizing compiler.

In either case, to obtain the trace for the program under test we wrote two Julia functions
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1 target remote 127.0.0.1:1234
2 set logging file /tmp/gdb.txt
3 set logging overwrite on
4 set logging enabled off
5 file example.elf
6 display/i $pc
7 break *main
8 continue
9 set $i=0

10 while ($i<500)
11 ni
12 set $i = $i + 1
13 end
14 set logging enabled on
15 bt
16 set $i=0
17 while ($i<4000)
18 si
19 set $i = $i + 1
20 end
21 quit

Listing 3.4: GDB command file when connecting to a QEMU simulated program.

to extract it. When working with the deterministic program in the simulation, the function
get_trace_gdb first prepares a file to be read by GDB containing instructions about how
to process the executing program. The Listing 3.4 shows an equivalent example of the
result, assuming that the program is called example.elf. Line 1 connects GDB to a
process exposed to localhost on port 1234: this is where QEMU will run. Then GDB will
set up the logging of its session but it will keep it disabled for now (lines 2 to 4), and it
will load the same object file running on the simulator (line 5). This may help to obtain
more information if in future one would want to make GDB print it. Line 6 instructs
GDB to display at each breakpoint and step the program counter, and format it as an
instruction. Then it places a breakpoint upon entering function main, reaches it (line
8), and then uses an helper counter variable to skip the first 500 instructions (lines 9 to
13). The first instructions are related to the board boot process, do we are not interested
in those, and their number can be customized using a Julia variable. Then GDB will
turn on the logging (line 14), print a backtrace of the stack for debugging purposes (line
15), and then prints the following 4000 instructions (this number too can be customized).
The version of GDB to call is obtained by the same bare-metal specific toolchain that
provided the version of the GCC compiler. An example of what the log looks like is given
in Listing 3.5: GDB prints out the program counter (corresponding to the address in
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memory of the instruction), the location of the instruction (the function name and its
offset from the start) and its textual representation. The QEMU process is no longer

1 #0 0x08000240 in main ()
2 0x080001fc in fac ()
3 1: x/i $pc
4 => 0x80001fc <fac>: push {r7}
5 0x080001fe in fac ()
6 1: x/i $pc
7 => 0x80001fe <fac+2>: sub sp, #20
8 0x08000200 in fac ()
9 1: x/i $pc

10 => 0x8000200 <fac+4>: add r7, sp, #0
11 0x08000202 in fac ()
12 1: x/i $pc
13 => 0x8000202 <fac+6>: str r0, [r7, #4]

Listing 3.5: Example extract of a GDB log.

needed and it is stopped, while the log is processed using regular expressions to extract
the sequence of instructions. This sequence is finally decorated using the seen metadata
functions, and the function returns a vector of DataFrame rows.

On the other hand, when extracting the sequence of instructions from the plain binary
file, we act on the text representation obtained by the objdump tool (again, the specific
toolchain version for simplicity). We first invoke objdump to dump all the functions in
the code to a string: two fractions of function disassembly can be seen in Listing 3.6. We
can see that objdump prints the address in memory of each function, its binary encoding
in hexadecimal, the textual representation, and tries to place the labels indicating the
starting points of the functions. Moreover, it highlights when it thinks a function has
been called by decorating the branch instructions with the destination label. Using this
information, we can parse the text to recursively build a graph of the called functions,
starting from the main function or from a specified label. This allows us to insert in the
trace exactly once all and only the functions that may be executed starting from the
specified point. This may be useful if for some reason the compiler didn’t optimize away
the dead code, but knowing it will never be executed we would like to not add its score
to the total. For debugging purposes the graph can be plotted, as shown in Figure 3.1.5.
Here too a regular expression is used to extract address, encoding and instruction text
from each line. Since each address acts as a key to identify each instruction (i.e., to each
address corresponds at most one instruction), we can check that no instruction has been
taken twice. Then, we can decorate the instructions with the metadata functions, and we
can return the vector of rows, as we did in the simulated case.
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08000232 <main>:
8000232: b580 push {r7, lr}
8000234: af00 add r7, sp, #0
8000236: f002 fac3 bl 80027c0 <HAL_Init>
800023a: f000 f805 bl 8000248 <SystemClock_Config>
800023e: 2005 movs r0, #5
8000240: f7ff ffdc bl 80001fc <fac>

; [...]

080001fc <fac>:
80001fc: b480 push {r7}
80001fe: b085 sub sp, #20
8000200: af00 add r7, sp, #0
8000202: 6078 str r0, [r7, #4]
8000204: 2301 movs r3, #1

Listing 3.6: Fractions of objdump output for the example program.

main

fac SystemClock_Config HAL_Init

Error_Handler memset HAL_RCC_ClockConfigHAL_RCC_OscConfig

HAL_InitTick

HAL_MspInit

HAL_NVIC_SetPriorityGroupingHAL_GetTick HAL_RCC_GetSysClockFreq

HAL_NVIC_SetPriority HAL_SYSTICK_Config__aeabi_uldivmod

__NVIC_GetPriorityGrouping NVIC_EncodePriority

__NVIC_SetPriority

SysTick_Config__aeabi_idiv0 __udivmoddi4

__NVIC_SetPriorityGrouping

Figure 3.1.5: Call graph for the example program.
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We present the data obtained with the process described with two goals. First, we want
to show the data exploration we performed in order to guide the analysis: this explains
some of the design choices we made in constructing the models, and highlights some of
the limitations of this experimental setup. Second, we show how good the oracle was in
predicting power differences in some test programs.

4.1. Data exploration

4.1.1. Assessing the regression variables effects

Our data exploration starts with merely observing the power plots produced by the
Otii GUI. Albeit inaccurate, they started showing some of the behaviours that we later
confirmed with a more accurate data analysis. In the following sections we show the effects
that became the regression variable we used in the model. To analyse the effects as isolated
as possible one from the other, when extracting the data to visualize we filtered it so to
have all other variables fixed. For instance, when analysing the effect of the forwarding
paths, we used only the instructions that did not use neither the conditional execution,
nor the “s” flag, nor an immediate operand, nor the operand shift. The filters we applied
are summarized in Table 4.1. The choice of using a positive or negative filter (i.e., whether
to consider the instruction that presented the effect or that did not) was taken as to have
the most significative dataset resulting. Having chosen in a couple of cases an inverse filter
is not a problem, since our need here is to isolate the best we can the effects of single
variables, and thus it does not invalidate the effect analysis.

Usage of the forwarding paths

As we anticipated in Section 3.1.8, we observed that the instructions that used the
processor forwarding paths used different amount of energy with respect to those who did
not. Figure 4.1.1a shows this effect on a selection of instructions.
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(a) Selected instructions

(b) Particular

Figure 4.1.1: Effect of the CPU forwarding paths.
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Table 4.1: Filters applied to the data points to isolate the tested effect. The symbol •
means that we considered the instructions that did not have the fixed effect, while the
symbol ◦ means that we considered those who did.

Tested effect
Fixed effect

Forwarding APSR Conditional Shift Immediate

Forwarding • • • •
APSR • • • ◦

Conditional • • • •
Shift ◦ • • •

Immediate • • • •

We observe different effects on the power consumption:

• mean power consumption increased for all instructions except for add

• instructions asr, mls, mvn, sub and udiv all increased their median consumption,
while clz, add and mov decreased it

• instructions add, asr, mls and sub increase their interquartile range (IQR), while
others do not (at least, not significantly)

• instruction mls introduces a fair number of outliers that shift the mean

These effects may be due to the different areas of the processor that were activated, and to
the fact that always overwriting the content of one of the source registers we are actually
constantly changing the state of the signals in the processor, thus introducing a much
higher switching activity. A summary of the effects of the variable is shown in Table 4.2.

Moreover, in Figure 4.1.1b we show a close-up of instructions asr, clz and mov, which do
exhibit differences, but of much littler magnitude compared to other ones like mvn.

Writing of the program status register

One of the features of the ARM ISA is that normal instructions do not update the content
of the application program status register (APSR). To do so, it is required to add the
suffix “s” to the instruction: for instance, instruction add computes the sum of two binary
numbers; adds does the same but updating the APSR flags. Those flags are then used
to read the result of comparisons, as they signal whether two numbers were equal, if an
overflow occurred etc. From an hardware point of view, we can assume that setting the
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Table 4.2: Summary of statistics changes for the usage of forwarding paths. The symbol •
means that the statistic for that instructions increased when the effect is active, ◦ means
it decreased, and •◦ means it stayed within a 5% range.

Statistic
Instruction

add asr clz mls mov mvn sub udiv

Mean ◦ •◦ •◦ • •◦ • • •
Median ◦ •◦ •◦ •◦ •◦ • •◦ •◦
Variance • • • • • • • •

IQR • • •◦ • • • • •

register will activate other paths in the processor, appointed to forward the flags produced
by the ALU to the APSR. Thus different areas of the processor will consume power, and
we expect to see this difference in our data. Following the idea of previous section, we
filtered out unrelated variables. The effect is shown in Figure 4.1.2 (again, on a selection
of instructions).

Figure 4.1.2: Effect of updating the APSR (“s” flag).

Here too we can see different effects on different instructions:

• mean power consumption increased for instruction adc, add, bic and orr, and it
decreased for all the others



4| Experimental results 47

• the IQR stays constant, but some instructions (add, mov, rsb and sub) introduce
outliers

• median power consumption increased for all instructions, except mov

Instruction mov is the only one from the ones we tested that exhibits such a great difference.
A summary of the effects introduced can be seen in Table 4.3.

Table 4.3: Summary of statistics changes for the updating of the APSR (“s” flag). The
symbol • means that the statistic for that instructions increased when the effect is active,
◦ means it decreased, and •◦ means it stayed within a 5% range.

Statistic
Instruction

adc add bic mov orr rsb sub

Mean •◦ •◦ •◦ ◦ •◦ •◦ •◦
Median •◦ •◦ •◦ ◦ •◦ •◦ •◦
Variance ◦ • ◦ • • • •

IQR •◦ •◦ ◦ •◦ •◦ • •

Conditional execution

The normal ARM instructions are executed one after the other. To change the control
flow, one can use branches or conditionally executed instructions. The latter means to add
to the instruction mnemonic code a suffix representing a condition, like the instruction
addeq that executes only if the APSR flag Z is set to 1 (indicating the two numbers of
the last comparison were equals). In general, when the condition is true, the instruction is
executed, otherwise it is skipped (or, equivalently, it is read as a nop). Since we tested this
effect only on instructions add and sub, we show the plot only for those, in Figure 4.1.3. To
collect the data for this particular setting, we first executed a cmp or equivalent instruction
to set the APSR in a state that would permit the execution of the instruction, then we
injected such instruction as usual. To better show the difference in the distributions, we
plotted both the box plot and the violin plot for the power distribution. We can observe
that the mean power consumption increased greatly, just like the IQR; the median on the
other hand increased significantly just for the sub instruction. Again, the effect is not
constant between the two instructions. A summary is shown in Table 4.4.
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(a) Box plot of the effect

(b) Violin plot of the effect

Figure 4.1.3: Effect of using the conditional execution.
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Table 4.4: Summary of statistics changes for the usage of conditional execution. The
symbol • means that the statistic for that instructions increased when the effect is active,
◦ means it decreased, and •◦ means it stayed within a 5% range.

Statistic
Instruction

add sub

Mean •◦ •
Median •◦ •
Variance • •

IQR • •

Barrel shift

We also investigated the ability of the ARM processors to shift their second operand (a
feature sometimes called “barrel shift”). This time, we only tested as a sample the add

instruction. The result of the usual analysis is shown in Figure 4.1.4. This time all the

(a) Box plot of the effect (b) Violin plot of the effect

Figure 4.1.4: Effect of using the barrel shift.

statistics but the IQR increased. However, the variable changes the statistical distribution,
and introduced an outlier that shifts the mean.
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Usage of an immediate operand

A last thing we may want to test is whether the power consumption changes when the
second operand is an immediate with respect to when it is not. This is however just a
circumstantial analysis: when the operand is a register, power consumption may depend
greatly on the content of the register, thus the difference may change depending on the
status of the processor registers. However, to see if it is worth including this difference as
a regression variable, we can observe the data, as shown in Figure 4.1.5a. We see that:

• all instructions but mov decrease their mean and median consumption

• the IQR tends to slightly decrease, but for some instructions (particularly cmp, mov
and ror) the immediate operand introduces outliers

Instructions cmp and mov are worth a particular mention, as for the former are introduced
far outliers, while the latter presents a huge gap in mean power consumption, and it is the
only one from the selected to show an increase in such sense (an effect similar to what
the same mov instruction did when observing the effect of updating the APSR). Also,
instruction vmov decreased greatly its IQR.

Figure 4.1.5b shows the other instructions magnified to better appreciate their effect, and
a summary of the statistics changes is shown in Table 4.5.

Table 4.5: Summary of statistics changes for using an immediate operand. The symbol •
means that the statistic for that instructions increased when the effect is active, ◦ means
it decreased, and •◦ means it stayed within a 5% range.

Statistic
Instruction

add and cmp lsl mov ror sub vmov

Mean •◦ •◦ •◦ •◦ • •◦ •◦ •◦
Median •◦ •◦ •◦ •◦ • •◦ •◦ •◦
Variance ◦ ◦ • ◦ • ◦ ◦ ◦

IQR ◦ ◦ •◦ ◦ •◦ ◦ ◦ ◦

Conclusions

As we have seen in the past examples the effect relative to the regression variables we
chose does have an effect on the power consumption. However, such effect is not constant
across all the instructions. This means that it is better to correlate the usage of the paths
with the instruction mnemonic to obtain an higher precision. When the first model fails
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(a) Selection of instructions

(b) Particular of most similar instructions

Figure 4.1.5: Effect of using an immediate value as second operand.
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and we resort to the second, simpler model, or we use a constant effect (as we explained
in Section 3.1.8), the precision of the result may significantly be reduced.

4.1.2. The binary weight dependency

As we mentioned in Section 2.2.3, we expect the power consumption to depend significantly
on the binary weight of the signal flowing in the processor. Since we cannot know, in
general, the internal state of the CPU at runtime (it is possible only in a completely
deterministic case, that is when no data is collected from external agents such as the
user or a random source), we focus our analysis on the binary weight of the instruction
currently being executed. We do this with an analysis similar to the previous: we filter
out all the irrelevant instructions, i.e. the ones presenting the effects we do not want to
consider, then we plot the data. In the following we present a few instructions where all
the additional effects have been filtered out, except for the usage of immediate values for
the second operand: for that, we present examples from both the datasets.

We start with Figure 4.1.6, where we plotted instructions that used all register operands.
Some instructions data align nicely onto a line (like add), others exhibit a linear dependency
but more sparse (asr). The size of the data set is important: with fewer data points to
perform the regression on, we are less confident about the goodness of the prediction, and
we can even question if a linear dependency is present at all. For instance, instruction
umull may have a linear dependency but also a relevant heteroscedasticity. This may
mean that there is at least one other variable that we have not captured [4], or that we
simply ended up with a too little dataset, and this apparent behaviour showed up by
chance. Anyway, even in case the data do show heteroscedasticity, the linear regression
model will still give unbiased predictions of the model parameters, so we can ignore the
phenomenon. These errors will not statistically affect real programs, as they are large
enough that the errors effect will be diluted. If the dataset is degenerately small, such as
for instruction bx, we can have a trivially very close linear approximation (here we have
just 3 data points), but we expect it to be very fragile, in the sense that new values may
differ significantly from the predicted ones. Other instructions, such as smlal and vpop,
present very sparse dataset, so the linear dependency is little to non-existent: however,
the linear regression tool is robust to this event, in the sense it naturally tends to assign a
value of 0 to the coefficients of non correlated variables, thus not invalidating the model.

We can observe other examples when using immediate values, as shown in Figure 4.1.7.
Here too some instructions (like add) present a good correlation, others are sparse (ldrb),
and others have very few data points (blx). There are also instructions that form clusters



4| Experimental results 53

(a) add instruction (b) asr instruction

(c) umull instruction (d) bx instruction

(e) smlal instruction (f) vpop instruction

Figure 4.1.6: Dependency of power consumption by the binary weight, for a selection of
instructions using all register operands.



54 4| Experimental results

of points, like bl, cmp and ldr. This suggests that there are more hidden variables that
can be identified within the data, and that may be discovered with the help of machine
learning techniques, as stated before. Such analysis however is over the scope of our work.

An attempt we can do to soften our model anomalies is about the instruction working with
the machine memory. We can expect the bad performance of load and store instructions:
their effects are also determined by the content of the memory and more importantly by
the current state of the processor cache, which we cannot know before runtime. A possible
patch to the problem may be correlating their power consumption with the distance in
bytes from the address of the current instruction. In this way, when we read/store on a
memory location “near” from where the execution is, we can suppose the probability of a
cache miss is lower, since we know for a fact that close areas of memory are already in
the cache (since we are reading the code from there); dually, we can assign an higher cost
to higher distances. In the code of the model we kept track of this when calculating the
amount of the immediate operand of a given instruction (see Listing B.1 at page 90): when
we are decorating a branch instruction, the value we store is actually the difference between
the destination and the current address. We can see this dependency on Figure 4.1.8:
even if a correlation seems to be present, it does not appear to be close to linear. This
may be due to the fact that, after the cache miss threshold has been exceeded, there is no
dependency on how far the new cache block will be loaded. An activation function may be
a better fit than a linear dependency, but this would require to further modify our model.
Therefore, we leave this as future work.

4.2. Results

We now present the results of our oracle, both with respect to the train data (Sec-
tion 4.2.1) and when doing validation on real programs (Section 4.2.2). The latter has
been conducted in two scenarios, as we introduced in Section 3.1.10: by simulating a
completely-deterministic program (without user input), or by estimating a binary code.

4.2.1. Goodness of the linear models

The complete linear model describes sufficiently well the input train data. A common
statistic describing how much of the data behaviour is captured by the model is the
R2 index [4]: for this model it’s 0.7938, meaning that 79.38% of the input behaviour
is explainable with the model. We can then compute the mean absolute percentage
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(a) add instruction (b) ldrb instruction

(c) blx instruction (d) bl instruction

(e) cmp instruction (f) ldr instruction

Figure 4.1.7: Dependency of power consumption by the binary weight, for a selection of
instructions using all immediate operands.
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(a) b instruction

(b) bl instruction

(c) blx instruction

Figure 4.1.8: Dependency of the power consumption on the branch distance.
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error (MAPE) with the usual formula

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ (4.2.1)

where the yt are the measured powers, the ŷt are the predicted powers, and n is the
number of observations. For the complete model, we obtain a value of around 6.4%. Then
we can perform a 10-fold cross validation, calculating the MAPE for each subset. The
obtained values may fluctuate due to the random shuffling we do before partitioning the
train dataset; however their value have a mean of 6.6%. Lastly, we can perform a t-test to
check whether the regression coefficients are statistically different from 0 (this was done
automatically by the statistical package we used). More precisely, the null hypothesis is
that the coefficient is 0, and the alternative hypothesis is that it is different from 0. For
the complete model, we observe that the 26.92% of coefficients has a p-value above the
usual significance level of 0.05.

On the other hand, the reduced model generally has worse indexes, being less complete.
The R2 index is 0.7711 (77.11%), the total MAPE is 7.27%, the 10-fold mean MAPE is
7.41%, and the fraction of coefficients whose p-value is over 0.05 is 53.88%.

We can also observe some behaviour of the models through plots. In Figure 4.2.1 we
see the error distributions for the two models. As we see, the complete model is more
accurate, while the errors of the reduced one are more spread out. On the other hand, in
Figure 4.2.2 we see the model instructions in a plane whose dimensions are the measured
and predicted power values. The turquoise line represents the equation y = x, that is
when the predicted value coincide with the measured one (and thus the error is null). It is
difficult to appreciate the difference on the plot, but the numeric error values confirm that
the reduced model is a little more spread out.

This kind of error exploration can be done also on the single instructions. We can see
some examples in Figure 4.2.3: some instructions are almost equally predicted by the
complete and the reduced model (instruction add, Figures 4.2.3a and 4.2.3b), others are
accurately predicted by the complete model, but not by the reduced one (instruction and,
Figures 4.2.3c and 4.2.3d), and some are not accurately predicted by neither of the two
(instruction vdiv, Figures 4.2.3e and 4.2.3f).

4.2.2. Model validation
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(a) Complete model (b) Reduced model

Figure 4.2.1: Histogram of error distributions of the linear models.

(a) Complete model (b) Reduced model

Figure 4.2.2: Difference between measured and predicted power values for the linear
models. The turquoise line indicates where the two coincide, i.e. when the prediction is
equal to the measured value.
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(a) add, complete model (b) add, reduced model

(c) and, complete model (d) and, reduced model

(e) vdiv, complete model (f) vdiv, reduced model

Figure 4.2.3: Difference between measured and predicted power values for a few instructions.
The turquoise line indicates where the two coincide, i.e. when the prediction is equal to the
measured value. On the left is shown the complete model, on the right the reduced one.
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Simulating a deterministic program

For this use case, we needed to run a program that requires no user interaction or external
inputs. We wrote simple examples of such a program, as we:

• calculated the nth Fibonacci’s number recursively

• calculated the nth Fibonacci’s number iteratively

• calculated the factorial of a number n recursively

• calculated the factorial of a number n iteratively

• calculated the sum of the first n natural numbers iteratively

All the source codes for these simple programs are shown in Listing 4.1. The functions
have been tested by being called in the main infinite loop provided by the firmware C code;
then, their power consumption has been measured like we previously did when measuring
the instructions. A copy of each program binary has been saved to extract the trace with
QEMU, as we explained in Section 3.1.10. The only other modification to the firmware we
made was to disable the floating point unit, as the QEMU emulated machine had a bug
that prevented using it and in our programs was not needed anyway.

The heat map in Figure 4.2.4 shows the difference of the powers consumptions measured
when the programs were running on the board. The x and y axis (respectively growing to
the right and to the bottom, as matrix indexes) correspond to the programs tested, i.e. the
ones shown in Listing 4.1, each one called with the argument ranging in the set {0, 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30}. Since reporting each program name would have turned out
too cluttered, we marked just some of them. The meaning is that the colour of the square
in position (x, y) reflects the difference ∆P = Py − Px (i.e. row − column), as indicated
on the colour bar, measured in W. Similarly, Figure 4.2.5 does the same but for the power
estimate we obtained from our oracle. In both cases the order of the programs on the
axes is the same, that is by function first and argument then. As natural, the maps are
antisymmetric with respect to the main diagonal. Moreover, we can see relatively distinct
clusters of values, partitioning the maps in a 5× 5 grid, and some more noticeable values
at the borders of such partitions. This means that the power consumption is primarily
determined by the function implemented (i.e., by the code running), and that the data
signals flowing in the processor only partially contribute. The input values however are
not irrelevant: the border values are the ones that trigger different control flows in the
application. For instance, when evaluating the fact (recursive) function (Listing 4.1a) with
0 as argument, the condition at line 2 is true from the start, therefore line 3 is executed,
and the else block is never entered, and the recursion does not actually take place. On
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1 int fact(int n) {
2 if (n <= 1) {
3 return 1;
4 } else {
5 return n * fact(n - 1);
6 }
7 }

(a) Factorial (recursive).

1 int fib(int n) {
2 if (n <= 1) {
3 return 1;
4 } else {
5 return fib(n - 1) + fib(n - 2);
6 }
7 }

(b) Fibonacci (recursive).

1 int fact(int n) {
2 int res = 1;
3 for (int i = n; i > 0; i--){
4 res *= i;
5 }
6 return res;
7 }

(c) Factorial (iterative).

1 int sum(int n){
2 int res = 0;
3 for(int i = 1; i <= n; i++){
4 res += i;
5 }
6 return res;
7 }

(d) Sum of natural numbers (iterative).

1 int fib(int n) {
2 int fib_2 = 1;
3 int fib_1 = 1;
4 int fib_0 = 2;
5

6 if (n <= 1) {
7 return 1;
8 } else {
9 for (int i = 2; i < n; i++){

10 fib_2 = fib_1;
11 fib_1 = fib_0;
12 fib_0 = fib_2 + fib_1;
13 }
14 return fib_0;
15 }
16 }

(e) Fibonacci (iterative).

Listing 4.1: Deterministic programs.
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the other hand, when calling the function with an argument of 10, line 5 is executed many
times. The net effect is that the difference between programs fac_rec_#1 and fac_rec_#2

is 4.084 × 10−3W, while the difference between fac_rec_#9 and fac_rec_#10 is just
−4.9 × 10−5W. To show the complete data of an example program, we reported in
Table 4.6 all the results of recursive factorial binaries.

Table 4.6: Results for the recursive fact function, measured from the trace provided by
QEMU and GDB.

Program Measured (W) Predicted (W) Error (%)

fac_rec_#0 0.121 555 0.074 372 −38.82

fac_rec_#1 0.121 587 0.074 372 −38.83

fac_rec_#2 0.117 503 0.099 467 −15.35

fac_rec_#3 0.116 771 0.107 857 −7.63

fac_rec_#4 0.116 257 0.111 863 −3.78

fac_rec_#5 0.116 123 0.114 325 −1.55

fac_rec_#6 0.115 823 0.116 345 0.45

fac_rec_#7 0.115 683 0.117 124 1.25

fac_rec_#8 0.115 455 0.118 032 2.23

fac_rec_#9 0.115 474 0.118 74 2.83

fac_rec_#10 0.115 523 0.119 347 3.31

fac_rec_#15 0.115 789 0.121 19 4.66

fac_rec_#20 0.115 733 0.121 723 5.18

fac_rec_#25 0.115 687 0.122 259 5.68

fac_rec_#30 0.115 541 0.122 266 5.82

To assess the goodness of the model, since our primary goal is to have a faithful order
relationship between programs, we analyse how much the differences computed between
measures and between predictions differ, for each couple of programs. We can see these
error values plotted in Figure 4.2.6, where the colour represents the difference between the
values of the two previous heat map (i.e., (Pmeasured

y −Pmeasured
x )− (P predicted

y −P predicted
x )).

Again, we can see that generally the major part of the difference is made up by the function.
In Figure 4.2.7 we plotted the same errors but in absolute value.

Eventually, in Figure 4.2.8 we show the order relationship as predicted by our oracle. The
ratio of correctly predicted relationships is 31.27%, a very low value. This may mean that
the model is not accurate enough to appreciate the differences introduced by the ratios
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Figure 4.2.4: Difference heatmap of measured power consumptions for the deterministic
programs. Each point represent the difference between the measured power consumption
of the program indicated on the right and the one indicated on the top.
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Figure 4.2.5: Difference heatmap of predicted power consumptions for the deterministic
programs, measured with QEMU. Each point represent the difference between the predicted
power consumption of the program indicated on the right and the one indicated on the
top.
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Figure 4.2.6: Error heatmap between measured and predicted power consumptions for the
deterministic programs, measured with QEMU. Each point represent the error between
the differences in measured and predicted power consumption of the program indicated on
the right and the one indicated on the top.
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Figure 4.2.7: Error heatmap between measured and predicted power consumptions (abso-
lute value) for the deterministic programs, measured with QEMU. Each point represent
the error between the differences in measured and predicted power consumption of the
program indicated on the right and the one indicated on the top.
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of instructions executed (which is the effect we observed related to the argument of the
functions), or that the trace provided by QEMU and GDB is not faithful to the physically
executed one.

Estimating a binary program

The second type of prediction we can make is when we predict the consumption of the
entire binary, without estimating the deterministic sequence of instructions. To test such a
case, and at the same time checking the integrability of our model with a modified compiler,
we used a battery of 58 benchmarks employing the Taffo framework [3]. Doing an analysis
similar to the previous section, we see the heat maps of the measured and predicted power
consumptions in Figures 4.2.9 and 4.2.10, respectively. In this case the programs are
partitioned with respect to whether the optimization is active or not: benchmarks ending
with the string orig (the first part of the matrix axes) are normally compiled; benchmarks
ending with the suffix core2_1_100_100 are compiled with the Taffo optimizations (the
second part of the axes). This time the differences between the measured powers are much
more pronounced, while between the predicted ones are much more attenuated.

The error heat maps are shown in Figures 4.2.11 and 4.2.12 for respectively signed and
absolute error values. With respect to the deterministic programs above, these values
are overall higher, with the maximum value around 30% higher in magnitude. For a
comparison, we show in Table 4.7 a selection of prediction errors from the dataset.

Figure 4.2.13 shows the sign error heat map. This time, the order relationship is preserved
in more cases: the success rate increased up to 71.76%.

Finally, we may restrict our analysis to the optimization difference for each benchmark,
that is, we check if the oracle correctly predicts the difference sign between the normal
and the Taffo optimized program. The results are shown in Table 4.8: the success rate is
86.21%.

Using the binary estimate with the deterministic programs

Given the significative difference in the results, one may wonder if using the binary
prediction may improve the results for the deterministic programs of Section 4.2.2 too.
Doing so leads to the results in Figures 4.2.14, 4.2.15, 4.2.16 and 4.2.17. The differences
between predicted powers are much reduced, as are the errors. For completeness, in
Table 4.9 we show the prediction errors of the same program shown at page 62. The
success rate of the order relationship improved, raising to 64.66%.
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Figure 4.2.8: Sign error heatmap between measured and predicted power consumptions
for the deterministic programs, measured with QEMU. A green point means that the
measured and predicted differences for the program indicated on the right and the one
indicated on the top have the same sign; a red one that they have opposite signs.
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Figure 4.2.9: Difference heatmap of measured power consumptions for the Taffo benchmarks.
Each point represent the difference between the measured power consumption of the
program indicated on the right and the one indicated on the top.
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Figure 4.2.10: Difference heatmap of predicted power consumptions for the Taffo bench-
marks. Each point represent the difference between the predicted power consumption of
the program indicated on the right and the one indicated on the top.
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Figure 4.2.11: Error heatmap between measured and predicted power consumptions for the
Taffo benchmarks. Each point represent the error between the differences in measured and
predicted power consumption of the program indicated on the right and the one indicated
on the top.
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Figure 4.2.12: Absolute error heatmap between measured and predicted power consump-
tions for the Taffo benchmarks. Each point represent the error between the differences in
measured and predicted power consumption of the program indicated on the right and the
one indicated on the top.
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Figure 4.2.13: Sign error heatmap between measured and predicted power consumptions
for the Taffo benchmarks. A green point means that the measured and predicted differences
for the program indicated on the right and the one indicated on the top have the same
sign; a red one that they have opposite signs.
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Figure 4.2.14: Difference heatmap of predicted power consumptions for the deterministic
programs, measured with binary estimation. Each point represent the difference between
the predicted power consumption of the program indicated on the right and the one
indicated on the top.
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Figure 4.2.15: Error heatmap between measured and predicted power consumptions for the
deterministic programs, measured with binary estimation. Each point represent the error
between the differences in measured and predicted power consumption of the program
indicated on the right and the one indicated on the top.
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Figure 4.2.16: Error heatmap between measured and predicted power consumptions (abso-
lute value) for the deterministic programs, measured with binary estimation. Each point
represent the error between the differences in measured and predicted power consumption
of the program indicated on the right and the one indicated on the top.
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Figure 4.2.17: Sign error heatmap between measured and predicted power consumptions
for the deterministic programs, measured with binary estimation. A green point means
that the measured and predicted differences for the program indicated on the right and
the one indicated on the top have the same sign; a red one that they have opposite signs.
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Table 4.7: Results for some Taffo benchmarks.

Program (bench_) Measured (W) Predicted (W) Error (%)

covariance_orig 0.240 614 0.113 281 −52.92

covariance_core... 0.090 177 0.112 405 24.65

floyd_warshall_orig 0.242 304 0.114 232 −52.86

floyd_warshall_core... 0.090 344 0.113 043 25.13

gramschmidt_orig 0.237 356 0.113 243 −52.29

gramschmidt_core... 0.239 327 0.108 636 −54.61

heat_3d_orig 0.090 164 0.109 528 21.48

heat_3d_core... 0.089 995 0.112 997 25.56

jacobi_1d_orig 0.089 865 0.112 666 25.37

jacobi_1d_core... 0.092 637 0.112 889 21.86

jacobi_2d_orig 0.089 777 0.112 503 25.31

jacobi_2d_core... 0.089 675 0.112 338 25.27
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Table 4.8: Results for the Taffo optimization process. The symbol • means that the oracle
correctly predicted the difference sign between the measured and the predicted powers; •
means the opposite.

Benchmark program Result

bench_2mm •
bench_3mm •
bench_adi •
bench_atax •
bench_bicg •

bench_cholesky •
bench_covariance •
bench_deriche •
bench_doitgen •
bench_durbin •
bench_fdtd_2d •

bench_floyd_warshall •
bench_gemm •

bench_gemmver •
bench_gesummv •

Benchmark program Result

bench_gramschmidt •
bench_heat_3d •

bench_jacobi_1d •
bench_jacobi_2d •

bench_lu •
bench_ludcmp •
bench_mvt •

bench_nussinov •
bench_seidel_2d •

bench_symm •
bench_syr2k •
bench_syrk •

bench_trisolv •
bench_trmm •
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Table 4.9: Results for the recursive fact function, measured with the binary estimation
method.

Program Measured (W) Predicted (W) Error (%)

fac_rec_#0 0.121 555 0.123 552 1.64

fac_rec_#1 0.121 587 0.123 541 1.61

fac_rec_#2 0.117 503 0.123 541 5.14

fac_rec_#3 0.116 771 0.123 53 5.79

fac_rec_#4 0.116 257 0.123 571 6.29

fac_rec_#5 0.116 123 0.123 56 6.4

fac_rec_#6 0.115 823 0.123 56 6.68

fac_rec_#7 0.115 683 0.123 549 6.8

fac_rec_#8 0.115 455 0.123 541 7.0

fac_rec_#9 0.115 474 0.123 53 6.98

fac_rec_#10 0.115 523 0.123 53 6.93

fac_rec_#15 0.115 789 0.123 537 6.69

fac_rec_#20 0.115 733 0.123 56 6.76

fac_rec_#25 0.115 687 0.123 519 6.77

fac_rec_#30 0.115 541 0.123 537 6.92
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In this work we have explored the feasibility of building a power consumption oracle for a
given processor, such that it can be integrated into a compiler optimization toolchain. In
doing so, we analysed a specific processor and collected some validation data for it. We
can now comment the results of our model and outline the requirement to integrate such
a model in a more general tool.

5.1. Model results

As we previously stated, the goodness of a linear model such as the one we used is as good
as the data used to train it. Since it is unfeasible to collect data for every combination of
instructions, we resorted to a multi-step prediction, where progressively less specialised
model are queried. We must note however that the single models are far from perfect, and
that testing as many combinations as possible is extremely important.

Moreover, we saw that a linear model may need to include non linear functions to describe
the more complex parts of the processor, such as the cache management. On the other
hand, using a single, so complex model for all kinds of processors may introduce overfitting,
as we cannot know in advance which behaviours will the processor under test exhibit. The
ideal approach would be to manually check the presence of all the dependencies we could
identify, and then select just the useful model variables.

Generally speaking, the final oracle we built is able to correctly identify changes in power
consumption in more than half of the cases. However, this does not necessarily mean that
the model predictions will correctly guide a compiler optimizations, as they operate on
different granularity levels. We can take as example cases the validation conducted on the
optimizations performed by the Taffo toolchain, which gave good results; however, it is
not a sufficiently exhaustive validation with respect to an actual compiler toolchain. This
is left as future work.
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5.2. Model feasibility

We can now summarise the difficulties of building an oracle, and how they can be mitigated.
In general, we can say that our initial goal of having a general purpose oracle building
method, requiring only basic input data regarding the target processor, can be reached if
and only if some conditions are met.

1. The identified general model must be valid for all processors, or at least for a large
range of them. Since including a new processor in the compiler toolchain should be
a relatively fast operation, adapting the model to a particular CPU should be simple
and quick. The general model (or the adapted particular one) should not present
under nor overfitting.

2. It must be possible to collect the data in an easy and accurate way. Also, a
professional setup is desirable, as it accelerates data collection and allows for better
precision. The processor under test should be injectable with arbitrary code in an
easy way.

3. It must be possible to access to all the information required to produce the estimate.
In practice, this means doing the prediction at a stage when such information is
available. For instance, since we noted the high dependency of power consumption on
instruction binary weight, we needed to know the binary instruction representations
that would end in memory. This meant that we needed to work at the assembly
level: higher level representations that mask the register allocations, or the final ISA
mapping (such as, for instance, the LLVM-IR), couldn’t have predicted these effects.

The data collecting velocity of requirement number 1 may be improved by generating a
test suit for different types of instructions. For instance, one may have a set of parameters
(like register numbers) to be tested for three registers numeric computing instructions, like
add, sub, mul; a set to be used for two registers instructions, like cmp and mov, and so on.
Such suit may be generated by a tool, parametrized with the set of instructions and their
type. This will not cover all instructions (since some of them are specific to the processor
family), but it may help in speeding up part of the process.

Also, we reiterate that requirement number 2 is particularly important for the total
goodness of the predictor: in our case, for instance, the memory instructions (loads, stores,
push and pop) were particularly difficult to test, and collecting fewer data points may
reduce the accuracy of the model. By deeply analysing the firmware code it may be
possible to solve the issue, but that is not guaranteed and it would require an ad hoc
analysis for each processor, partially contrasting with requirement 1.
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In the end, we conclude that building such an oracle is possible, but:

• its accuracy may be limited (an exhaustive validation on an optimization toolchain
has to be conducted)

• its building may be time consuming, and the portability of the data collecting method
depends on a series of factors
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To create such a stimulus suite, we developed a couple of functions to generate these sparse
interval of values, and format them as correct instructions.

1 (defun instruction-cartesian-product (format ranges)

2 "Insert into the buffer the cartesian product of the FORMAT string.

3 RANGES is a list of ranges."

4

5 ;; check the number of args is consistent

6 (let ((contiguous-format (check-placeholders format))

7 (format-placeholders-count (count-placeholders format))

8 (ranges-count (length ranges)))

9 (when (not contiguous-format)

10 (error "Format list %s contains gaps or missing placeholders, check

it" format))↪→

11 (when (not (= format-placeholders-count ranges-count))

12 (error "`instruction-cartesian-product' called with %d placeholders

but %d ranges"↪→

13 format-placeholders-count

14 ranges-count))

15 ;; base case (no more placeholders): simply insert the string

16 (if (= format-placeholders-count 0)

17 (insert format ?\n)

18 ;; else, recursion

19 (let ((range (car ranges))

20 (other-ranges (cdr ranges)))

21 (cartesian-recurse format range other-ranges)

22 ))))

23

24 (cl-defmethod cartesian-recurse (format (obj string-range) other-ranges)

25 "Perform recursion of `instruction-cartesian-product', for the object OBJ

of type `STRING-RANGE'.↪→

26
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27 FORMAT is the format string, OTHER-RANGES the other ranges to process."

28

29 (dolist (elt (strings obj))

30 (instruction-cartesian-product (partially-format format elt (index obj))

other-ranges))↪→

31 )

32

33 (defun partially-format (string object index)

34 "Format placeholders in STRING with OBJECT.

35

36 For now, it only handles placeholders marked with

37 `placeholder-marker', and objects can be ranges of strings or

38 numbers."

39

40 (save-match-data

41 (with-temp-buffer

42 (insert string)

43 (goto-char (point-min))

44 (while (re-search-forward (concat placeholder-marker

(number-to-string index))↪→

45 nil ; unbounded

46 t ; simply exit when no more matches

47 )

48

49 (let ((object (if (stringp object)

50 object

51 (if (numberp object)

52 (number-to-string object)

53 (error "Check partially-format object type!")))))

54 (replace-match object)

55 ))

56 (buffer-string))

57 ))

Listing A.1: Cartesian product range code.

In Listing A.1 we can see the core of the routine, the function instruction-carte-

sian-product. It is a recursive function, that expects a format string decorated with
placeholders, and a string containing a space separated list of ranges to be substituted.
The default placeholder is the % character, followed by an integer. Placeholders with the



A| Instruction generation code 87

same number will be replaced by the same text during expansion. In the base case, a
simple string with no placeholders will be passed as argument: in this case, the convenience
function count-placeholders will return 0, the condition at line 16 will be true, and
the function will simply insert the provided string in the current Emacs buffer. On the
other hand, when the format function does contain some placeholders, the condition is
false, and the function cartesian-recurse at line 21 is called. This is actually a method
from EIEIO, the Emacs Lisp object system (which was inspired from the Common Lisp
one), and it performs dynamic dispatch based on what is the type of the range it is called
on. The ranges (not shown in this listing) were defined of two types: numeric-range

and string-range. They are parsed from user provided strings: a numeric-range string
is of the form 0:2:10, meaning a sequence starting from 0, ending at 10, jumping by
steps of 2 (if the step number is omitted it defaults to 0); a string-range string is a
sequence of words separated by colons of arbitrary length, like apple:pear:oranges. For
simplicity, we only show the behaviour in the simpler case of the two, that is with the
string-range. There, the code cycles over all the words in the range with the dolist

macro at line 29, and for each one it recurse on instruction-cartesian-product, but
this time the format string will be first processed by partially-format, and the ranges
will be the remaining ones, i.e. all but the one currently being processed. The function
partially-format returns the provided string substituting the required placeholder with
object.

The net effect is that each time there is a placeholder, instruction-cartesian-product
will replace it with the correct element of the range using functions cartesian-recurse
and partially-format, then it recurse with the reduced string and ranges.

This in the end allows us to do

(instruction-cartesian-product "counting %1"

(list (parse-range "0::10" 1)))

and seeing inserted into the current buffer the text

counting 0

counting 1

counting 2

counting 3

counting 4

counting 5

counting 6

counting 7
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counting 8

counting 9

counting 10

A more complex example, and similar to a real ARM instruction is

(instruction-cartesian-product "%1 r0, r0, #%2"

(list (parse-range "add:sub" 1)

(parse-range "0:10:10" 2)))

giving

add r0, r0, #0

add r0, r0, #10

sub r0, r0, #0

sub r0, r0, #10
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The DataFrame containing the measured data points has been constructed as shown in
Listing B.1. The metadata function takes as argument a string containing the instruction
under test, and optionally its binary encoding and its address in the executable. The
instruction in first preprocessed by an auxiliary function, so to have a consistent naming
convention in the table. Then, the DataFrame is constructed. The variables ending with
the _sym suffix or starting with a colon are symbols, and they are used to index the
columns of the table. The function returns a DataFrame with a single row, that will be
later concatenated to the other ones.

The auxiliary functions used to decorate the data point are the following:

• get_binary_encoding returns the binary encoding of the instruction as a string,
representing the hexadecimal binary word corresponding to it in memory. It does so
by assembling the instruction on the fly

• get_mnemonic extracts the mnemonic opcode of the instruction (like add, sub or
nop)

• is_apsr checks whether the instruction has the “s” flag, which sets the processor
status register. There are actually two status registers in the ARM architecture, the
APSR and the current program status register (CPSR), but the distinction is not
relevant to the purpose of this work

• is_conditional checks whether the instruction uses conditional execution (like
addeq)

• has_barrel_shift checks whether the instruction uses the barrel shift for its second
operand, like add r0, r1, r2, lsl #2

• barrel_shift_amount returns the amount of bits to shift by when the instruction
has a barrel shift. If the instruction does a shift by a register, we set this to 0, as we
can’t know what is the value stored in the register

• has_immediate checks whether the second operand is an immediate value
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1 function metadata(instruction::AbstractString;
2 encoding::AbstractString = "",
3 address::AbstractString = "0")::DataFrame
4

5 instruction = clean_instruction(instruction)
6 if encoding == ""
7 # we need to compute it
8 encoding = get_binary_encoding(instruction)
9 end

10 try
11 DataFrame(
12 instruction_sym => instruction,
13 :mnemonic => get_mnemonic(instruction),
14 apsr_sym => is_apsr(instruction),
15 conditional_sym => is_conditional(instruction),
16 has_barrel_shift_sym => has_barrel_shift(instruction),
17 barrel_shift_sym => barrel_shift_amount(instruction),
18 has_immediate_sym => has_immediate(instruction),
19 immediate_amount_sym => immediate_amount(instruction, address),
20 dest_source_eq_sym => has_dest_source_eq(instruction),
21 :encoding => encoding,
22 binary_weight_sym => encoding_to_weight(encoding)
23 )
24 catch e
25 println("In intruction \"$instruction\":")
26 rethrow()
27 end
28 end

Listing B.1: Julia code to construct the DataFrame.
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• immediate_amount returns the immediate number of the second operand. This may
be useful as it is an operand known at compile time, and as such we can perform
regression on it. If the instruction does not have an immediate second operand (i.e.,
it is a register) the function returns 0

• has_dest_source_eq check whether the destination register is one of the source
registers, as explained above. If this distinction is not applicable, the function returns
false

• encoding_to_weight returns the binary weight of the instruction, i.e. the number
of 1s in its binary encoding





93

C| Predictor code

C.1. Single instruction

The code is shown in Listing C.1. The first linear model tries to produce an estimate in
line 7: if it fails, it throws an exception, and the control is assumed by the catch clause.
There, the second model is tried at line 13. If even this model fails, the function assigns
the constant power cost at line 20. In peculiar cases, a negative coefficient of the linear
regression can assign a negative cost to an instruction, if the corresponding variable is
large enough. To prevent this, we clip all power estimates to 0W at line 25. At the end,
the clock count for the instruction is extracted at line 28, and the tuple is returned.
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1 function predict_instruction(i::DataFrame)
2

3 _instruction = i[1, instruction_sym]
4 score = 0.0
5

6 try
7 score = predict(main_model, i)[1]
8 catch e
9 # it means we have not trained the model for this instruction

10 println("The complete model failed with instruction $_instruction")
11 println(e)
12 try
13 score = predict(reduced_model, i)[1]
14 println("Reduced: $_instruction\t$score")
15 catch e
16 # neither the reduced model is ok
17 println("The reduced model failed with instruction

$_instruction")↪→

18 println(e)
19 println("Constant: $_instruction\t$score")
20 score = mean_instruction_cost
21 end
22 end
23

24 if score < 0
25 score = 0.0
26 end
27

28 clock_cycles = get(instr_clock_cycles, i.mnemonic[1], 1) # default of
1↪→

29

30 # return (power = score * mean_scale_factor, clock_cycles =
clock_cycles)↪→

31 return (power = score, clock_cycles = clock_cycles)
32 end

Listing C.1: Julia code to compute the power consumption of a single instruction.



C| Predictor code 95

C.2. Multiple instructions
1 function predict_trace(trace::Vector)::AbstractFloat

2 cache = Dict{String, NamedTuple{(:power, :clock_cycles),

Tuple{AbstractFloat, AbstractFloat}}}()↪→

3 predictions = []

4 ## Compute score and clock cycles prediction ##

5 win_w = 2 # window width

6 for (t, n) in ((@view trace[i:i+win_w-1]) for i in

1:length(trace)-win_w+1)↪→

7 instruction = t[1, instruction_sym]

8 prediction = get(cache, instruction, nothing)

9 if prediction == nothing

10 prediction = predict_instruction(t)

11 cache[instruction] = prediction

12 end

13

14 instruction_next = n[1, instruction_sym]

15 prediction_next = get(cache, instruction_next, nothing)

16 if prediction_next == nothing

17 prediction_next = predict_instruction(n)

18 cache[instruction_next] = prediction_next

19 end

20

21 first_encoding = t[1, :encoding]

22 second_encoding = n[1, :encoding]

23 couple_instr_df = DataFrame(

24 avg_power_clean = mean([prediction[:power],

prediction_next[:power]]),↪→

25 first_mnemonic = get_mnemonic(instruction),

26 second_mnemonic = get_mnemonic(n[1, instruction_sym]),

27 first_weight = encoding_to_weight(first_encoding),

28 second_weight = encoding_to_weight(second_encoding),

29 hamming_distances = hamming(first_encoding, second_encoding)

30 )

31 scale_factor = 1.0

32 try

33 scale_factor = predict(inter_advanced_model,

couple_instr_df)[1]↪→
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34 catch e

35 # it means we have not trained the model for this instruction

36 scale_factor = predict(inter_basic_model, couple_instr_df)[1]

37 end

38

39 if scale_factor < 0

40 println("I1: $instruction\tI2: $instruction_next\tFactor:

$scale_factor")↪→

41 scale_factor = 0.0

42 end

43

44 new_power = prediction[:power] * scale_factor

45 push!(predictions, (power = new_power, clock_cycles =

prediction[:clock_cycles]))↪→

46 end

47

48 ## compute power score with a weighted mean ##

49 score = mean([t.power for t in predictions],

FrequencyWeights([t.clock_cycles for t in predictions]))↪→

50 # power_sum = 0.0

51 # cycle_sum = 0.0

52

53 return score

54 end

Listing C.2: Julia function to predict the power estimate of a sequence of instructions.

The code is shown in Listing C.2. We iterate through all the windows of two instructions
(line 8) and we predict the estimate for the first instruction (lines 10 and 12) and for the
second (lines 17 and 19). Then we construct the DataFrame with the metadata for the
pair of instructions (lines 23 to 32), then we use the linear models to produce the estimate
for the inter-instruction scale factor (lines 35 and 38). Here too, if the estimate is negative
due to large variables with negative coefficients, we clip the scale factor to 0. We then
integrate the correction by multiplying the single power estimate with the scale factor
(line 40). When we have computed a prediction for all the instructions, we can integrate
the clock cycles in the computation by doing a weighted mean (line 46).
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