
The Illusion of Randomness:
Demystifying the Entropy of ASLR
on Common Operating Systems

Tesi di Laurea Magistrale in
Ingegneria Informatica

Author: Gregorio Barzasi

Student ID: 977551
Advisor: Prof. Mario Polino
Co-advisors: Lorenzo Binosi
Academic Year: 2022-23

i

Abstract

Address Space Layout Randomization (ASLR) is a crucial defense mechanism employed
by modern operating systems to mitigate exploits by randomizing the memory layout of
processes. However, real-world implementations of ASLR are imperfect and subject to
weaknesses that can be exploited by attackers. This thesis evaluates the effectiveness
of ASLR on major desktop and mobile platforms, including Linux, MacOS, Windows,
and Android. An analysis tool was developed to take samples of memory object ad-
dresses across multiple processes, threads, and system reboots; statistical analysis was
performed on the sampled data to quantify the entropy, or randomness, of object place-
ment; memory layouts were also analyzed to identify correlations between objects that
could reduce overall entropy. The results show that while some systems like Linux dis-
tributions provide strong randomization, desktop platforms like Windows, MacOS and
mobile platforms like Android often fail to adequately randomize key areas like executable
code and libraries. Moreover, a major entropy reduction in the entropy of libraries after
the Linux 5.18 version was discovered. Positive Correlation paths that an attacker could
leverage to significantly reduce exploitation complexity were also identified. In the end,
found weaknesses were ranked based on severity, and a proof-of-concept attack validated
our entropy estimates. The findings provide insights into each platform’s resistance to
memory exploitation techniques. They also highlight opportunities for OS vendors to
strengthen ASLR implementations against these common vulnerabilities. Future work
includes analyzing hardened and custom operating systems, quantifying the impacts of
optimization techniques, and developing a profiling tool to analyze real-world executables.

Keywords: ASRL, entropy evaluation, operating system security, address randomiza-
tion effectiveness

Abstract in lingua italiana

L’Address Space Layout Randomization (ASLR) è un importante meccanismo di difesa
impiegato dai moderni sistemi operativi per mitigare la possibilità di exploit randomiz-
zando la disposizione della memoria dei processi. Tuttavia, le implementazioni reali di
ASLR sono imperfette e soggette a debolezze che possono essere sfruttate dagli aggres-
sori. Questa tesi valuta l’efficacia dell’ASLR sulle principali piattaforme desktop e mobili:
Linux, MacOS, Windows e Android. È stato sviluppato uno strumento di analisi per cam-
pionare indirizzi di oggetti in memoria attraverso più processi, thread e riavvii del sistema.
I dati campionati sono stati analizzati statisticamente per quantificare l’entropia, o ran-
domicità, del posizionamento degli oggetti. Sono stati analizzati anche i layout di memoria
per identificare le correlazioni tra gli oggetti che potrebbero contribuire a ridurre l’entropia
complessiva. I risultati mostrano che, mentre alcuni sistemi come le distribuzioni Linux
generalmente forniscono una forte randomizzazione, le piattaforme desktop come Win-
dows e MacOS, e le piattaforme mobili come Android spesso non riescono a randomizzare
adeguatamente aree chiave come il codice eseguibile e le librerie. Inoltre, è stata scop-
erta un’importante riduzione dell’entropia delle librerie dopo la versione 5.18 di Linux.
Sono stati identificati anche percorsi di correlazione positiva che un aggressore potrebbe
sfruttare per ridurre significativamente la complessità di attacco. Alla fine, le debolezze
trovate sono state classificate in base alla gravità e un attacco proof-of-concept ha conval-
idato le nostre stime riguardo l’entropia. I risultati forniscono indicazioni sulla resistenza
di ciascuna piattaforma alle tecniche di attacco. Inoltre, evidenziano le opportunità per
i produttori di sistemi operativi di rafforzare le implementazioni ASLR contro queste
vulnerabilità comuni. Il lavoro futuro prevede l’analisi di sistemi operativi rinforzati dal
punto di vista della sicurezza, la quantificazione dell’impatto delle tecniche di ottimiz-
zazione delle prestazioni e lo sviluppo di uno strumento di profiling per analizzare gli
eseguibili del mondo reale.

Parole chiave: ASRL, valutazione entropia, sicurezza di sistemi operativi, randomiz-
zazione degli indirizzi

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 Background and Motivation 3
2.1 Performance Metrics . 3

2.1.1 When . 3
2.1.2 What . 4
2.1.3 How . 4

2.2 Implementation Weakness . 4
2.2.1 Low Absolute Entropy . 4
2.2.2 Low Correlation Entropy . 5

2.3 OS Choice Motivation . 6
2.4 ASLR Analysis Overview and Improvement 7

2.4.1 Linux and MacOS . 7
2.4.2 Windows . 8
2.4.3 Android . 8
2.4.4 Limitations and Improvements . 9

3 Approach 11
3.1 Sampling . 11

3.1.1 Memory Objects . 11
3.1.2 Allocation Size Choice . 14

3.2 Pre-processing and Analysis . 15
3.2.1 Probability Distribution . 15

vi | Contents

3.2.2 Entropy Estimator . 16
3.2.3 Sample Decision . 17

4 Implementation Details 21
4.1 Sampling . 21

4.1.1 Sampling Program . 23
4.1.2 Sampling Launcher . 26
4.1.3 Rebooting Script . 27
4.1.4 Android . 28

4.2 Preprocessing . 31
4.3 Analysis . 32

5 Experimental Evaluation 35
5.1 Linux . 37

5.1.1 Linux 5.17.15 . 37
5.1.2 Linux 6.4.9 . 39

5.2 MacOS . 41
5.2.1 MacOS M1 Native . 42
5.2.2 MacOS M1 Rosetta . 44

5.3 Windows . 45
5.3.1 Windows 11 . 46

5.4 Android . 47
5.4.1 Android 13 . 48

6 Weakness and Attack POC 51
6.1 Weakness and Attacker Profile . 51
6.2 Attack Scenarios . 52

6.2.1 Fixed Position . 52
6.2.2 Random Position . 52
6.2.3 Distributed Attack . 53

6.3 Positive Correlation Attack POC . 53

7 Conclusions and future developments 55

Bibliography 57

A Linux Results 61

B MacOS Results 69

C Windows Results 79

D Android Results 85

List of Figures 91

List of Tables 93

List of Symbols 95

Acknowledgements 97

1

1| Introduction

In the context of software exploitation the more information an attacker can gather about
the targeted system, the easier it is to reach the goal of exploiting it. In particular, one
crucial piece of information for the success of buffer overflows attacks (as many others)
is the exact address of objects inside the memory space of the running program; this
information could allow an attacker to successfully exploit the software vulnerabilities
to modify memory content, leak information, or even deviate the execution flow of the
program, leading in the worst case scenario to arbitrary code execution. Even if this
type of vulnerability are very well known, they still account for almost 20% of the CVE
reported [18].

Address Space Layout Randomization (ASLR) is a security measure developed to improve
resilience against exploitation techniques that need precise memory location in order to
work. The base mechanism of ASLR is the randomization of the memory layout of
processes, to make exploitation a game of chance, thus its effectiveness increases as the
number of attempts needed to hit a precise object in memory increases. Ideally, we would
like ASLR to randomize each and every object that is allocated inside the memory of a
program at the moment of allocation and with high entropy (so, low predictability on the
object position); unfortunately, there is a gap between theoretical capabilities and real
world implementation: as we will see in the next sections on many systems available at
the moment ASLR lacks at least one of the mentioned aspects. In particular, the memory
is often grouped in sections or groups of sections and then randomized all together at the
program launch; as a consequence, even if the entropy of single memory objects is high it
can be reduced by collecting information about other memory objects, as their memory
sections of origin may be correlated in some way: we call this Positive Correlation [13].

Even if Positive Correlation it is an already known vulnerability [6], the research available
at the moment lacks a broad estimate about the severity of this vulnerability in terms of
entropy reduction; they are also limited in terms of section analyzed and the operating
systems considered [14] as they are strongly pointed towards Linux enterprise solutions;
moreover, available research are not up to date with the recent introduction of ARM

2 1| Introduction

architecture in Apple devices, so the performance of ASLR on those systems is completely
unknown.

In this work we tried to fill these gaps, in particular those are our contribution:

• We developed a tool capable of analyzing ASLR implementation of commercial
operating systems (Linux, Windows, MacOS and Android) by monitoring many
memory objects allocated in a multi-threaded fashion, and reducing the number of
samples needed to perform the analysis by adopting NSB entropy estimator.

• We analyzed the Absolute Entropy and Correlation Entropy of Linux 5.17.15, Linux
6.4.9, Windows 11, MacOS M1, MacOS M1 with Rosetta, and Android 13.

• We confirmed that on Linux, a leak of a Heap address still reduces the entropy
of the text section through Positive Correlation from 27.4 bit to just 13 bit thus
reducing the attack complexity from 178 million attempts to just 8 thousand [13];
we now found the same Positive Correlation path for Heap and Libraries with 9 bit
of entropy.

• We discovered a sudden reduction in randomization entropy of shared libraries in
Linux systems since the 5.18 release due to the introduction of Linux Folios perfor-
mance optimization.

The thesis is organized as follows:

• Chapter 2 contains a review of ASLR implementation and their limitations. An
overview State-of-the-art analysis tool and how we plan to improve the analysis
tecnique.

• Chapter 3 discuss the approach and architecture of the developed tool based on the
NSB entropy estimator.

• Chapter 4 presents the actual implementation along with the challenges faced during
the development.

• Chapter 5 discuss the results of analysis on the different OS, comparing their per-
formance before and after the rebooting process.

• Chapter 6 propose some attack scenario based on the results presented in previous
chapters along with a POC attack to evaluate empirically the results.

• Chapter 7 discuss conclusions and future research directions.

3

2| Background and Motivation

Analyzing ASLR performance is crucial as it is one of the last security measures that
need to be defeated before exploitation of a system. It’s fair to say that it isn’t the only
security measure in defense of attacks, in fact, we can rely also on NX bit and Stack
Smashing Protection (SSP) to be present in case a new bug or vulnerability is discovered
and our system is in danger to be compromised; however, the fact that we can rely on
other security systems, isn’t an excuse for vendors to adopt broken ASLR implementation;
moreover, being aware of the peculiar OS limitations can provide useful insight during the
choice of which operating system we shall use, according to the requirement and threat
model of our situation.

In the following sections, we will discuss the most common weaknesses, justify our op-
erating system choice, and present an overview of the state-of-the-art in terms of ASLR
evaluation.

2.1. Performance Metrics

To understand the limitations of ASLR implementation we shall start underlining the
goals and the expected performance of such a system: increase the number of attempts
an attacker should perform on average to correctly guess a memory address, through the
obfuscation of memory layout; to do so we would like to have a system that randomizes
memory objects often, with low predictability and with high granularity. To be more
rigorous we can use the Taxonomy of ASLR implementations proposed by Marco-Gisbert
and Ripoll [14] that categorizes the capabilities of ASLR implementation into three cate-
gories: when, what, and how. Based on the performance in these three categories we can
evaluate how well an ASLR implementation behaves and what should be improved.

2.1.1. When

ASLR systems in different OS differentiate themself by the frequency on which they
renovate the randomization of their memory section. We aim to have a system that

4 2| Background and Motivation

randomizes every object in memory, at the moment they are allocated; this presents
many difficulties, both in terms of performance reduction and increased complexity of
implementation so, at the moment, none of the commercial OS implements such advanced
technique. The best we can aim for, is to have the memory randomized every time a new
process is allocated in memory (as in the case of Linux implementation) however many
OS randomize only some part of memory and only at boot; this is considered to be a
broken implementation of ASLR, as a local attacker could use information gathered from
other processes to precisely localize library position; moreover, a remote attacker could
just brute force the address averaging half of the original entropy, or exploit byte-for-byte
attacks to reduce attack complexity even more [29].

2.1.2. What

One more aspect regards both the granularity of what is randomized and the number of
sections randomized: even one single non-randomized object can be exploited to take over
a system. For example, some implementation does not randomize all executable objects
or it does that only at boot, strongly reducing the overall security of the system and
increasing the chance of success of a ret2lib or ROP attack.

2.1.3. How

The last category regards how objects are randomized, in terms of the number of bits
randomized and the relative position of the objects. In fact, the current implementation
of ASLR utilizes only so-called partial-VM randomization, where the virtual memory is
divided into sections and then objects are placed inside them; this strategy increases the
chances of having Positive Correlation paths.

2.2. Implementation Weakness

All aspects mentioned in Section 2.1 affect unpredictability, and we can measure that
mathematically using entropy. In particular, the lack of Absolute Entropy and Correlation
Entropy is the most common weakness related to ASRL implementations.

2.2.1. Low Absolute Entropy

The major problem affecting ASLR implementations is low Absolute Entropy, that in
this context is directly linked to the brute force effort that an attacker needs to put in
to correctly guess directly the position of a memory object, without using any particular

2| Background and Motivation 5

technique to predict the position. In theory, the limit of Absolute Entropy of an object is
the size of the address, so 64-bit for the system considered in this research; however, the
practical limit is way lower, as the N Most Significant bits (MSb) are often not implemented
at a hardware level, and in software appear as a fixed value, or 0. For example, in 4-level
paging implementations of Linux kernel the 17 MSb are sign extensions of the address and
even in the most recent implementation with 5-level paging the practical limit for ASLR
is 56-bit [25].

To address content inside memory pages, page offsets are used and are represented by N

fixed Least Significant bits (LSb), thus the size of pages impacts directly the number of
bits available to the randomization process. For the most common used page size of 4
KB, we have the 12 LSb address fixed; this problem is even more relevant when we use
huge pages (eg. 2MB on Linux, so 21 bit of page offset).

Because of the fixed parts of addresses, the updated maximum entropy achievable for a
64-bit system using 4-level paging and pages of 4KB is 47bit − 12bit = 35bit. Unfortu-
nately, no 64-bit OS comes even close to this performance as other factors are involved in
the estimation of entropy.
Some of them are:

• Presence of growable sections: reduces the possibility of placing this kind of
object in memory, as they need space to grow up or down (such as heap and stack).

• Memory fragmentation: the allocation and de-allocation of objects may reduce
the probability of finding free continuous blocks.

• Not uniformity: the probability distribution inside the sections of the Virtual
Memory is a relevant aspect. If it’s not uniform an attacker could target the most
common value to increase the chances of success after doing some dynamical analysis
on the executable.

2.2.2. Low Correlation Entropy

Many memory objects are correlated in various ways, so the information provided by
the disclosure of a memory address sometimes can reduce significantly the complexity
of an attack. We can quantify the reduction by looking at Correlation Entropy, which
represents the entropy of the offset between two memory objects.

We can identify two cases:

6 2| Background and Motivation

• Positive Correlation: The offset between two memory objects has an entropy
lower than the sections of origin, so a leak is a piece of useful information to de-
randomize other sections.

• Negative Correlation: The offset between two memory objects has an entropy
higher or equal than the sections of origin, thus, is easier to guess the original
position than the offset, even in the presence of a leak. This is the case when
dealing with two uncorrelated variables.

Not all Positive Correlation scenarios are problematic, in fact, if the Correlation Entropy
is high enough we can consider the object to be secure, even if it’s slightly correlated
with other objects. The problem arises when the Positive Correlation is so severe that
an address leak could be potentially used to brute force the position of other objects
in a reasonable time, which in our case was considered to have 20 bit of entropy as we
will explain in Section 5; when this happens, we can identify what we call a Positive
Correlation path that can be potentially exploited.

The most severe case of Positive Correlation presents 0 Correlation Entropy because the
offset is fixed. This issue was exploited in the famous off2libc attack [12] and led to the
introduction of the Effective Entropy concept into ASLR-related discussion [6].

2.3. OS Choice Motivation

When we look at research related to ASLR analysis we can see a stable trend pointing
toward Linux systems. This is justified by the predominance of Unix servers active in
2023, counting for around 80% of the market share, of which around 50% uses Linux
kernels [27]. Enterprise servers require higher security standards than Consumer systems,
so it’s understandable that those have received more attention, sometimes evaluating even
hardened versions of the Linux kernel available on the market. On the other hand, we
have the Consumer market, where Linux-based systems counts for an insignificant 3% of
the market share when compared with the 70% of Windows and 20% of MacOS systems
[20]. Moreover, the recent adoption of ARM architecture by Apple made obsolete all the
research regarding MacOS. When we look at mobile systems Android is by far the most
common one with 70% [21] receiving less to no attention in recent research.

Because of this, we decided to focus our research on the consumer market considering the
following:

• Linux: we choose Ubuntu because is by far the most common Linux distribution
on the market [26].

2| Background and Motivation 7

• MacOS: we analyzed the newly commercialized ARM implementation, both using
native compiled software and using the Rosetta framework.

• Windows: considered the last available version, 11.

• Android: considered the last available version, 13.

To perform our research we started from scratch with a new ASLR analyzer tool to better
tackle the aspect we are interested in and to uniform the results over the considered OS.

2.4. ASLR Analysis Overview and Improvement

2.4.1. Linux and MacOS

The most advanced tool used in research is ASLR-A by Marco-Gisbert and Ripoll [13, 14].
It was used to perform analysis on Linux 4.15, PaX (a hardened version of Linux kernel),
and MacOS (originally referred to as OS X). As mentioned before we will consider only
the Consumer OS, so PaX implementation is out of the scope of this research. The tool
was developed to overcome the limitation found in paxtest, a tool developed by the PaX
team to evaluate the performance of their newly developed ASLR implementation. paxtest
had several issues:

• It considered only Absolute Entropy, using a custom heuristic not always accurate
in particular when dealing with non-uniform distributions.

• Low sample dimension (only 1000 samples).

• Incorrect target identification (the sampling of text area was in reality the library
section).

They improved those aspects by developing ASLR-A, a tool capable of taking thousands of
samples at a second and able to analyze numerous statistics. However, in this document,
we focused mainly on two aspects, that are the ones easily exploitable in brute-forcing
attacks: Absolute Entropy and Correlation Entropy. The tool can provide Absolute
Entropy estimation using three different methods: Shannon, Shannon at byte level, Shan-
non with variable bins width, and bit-flipping. Based on [14] it seems to be capable of
estimating also Correlation Entropy, however, the last known version of the tools available
on the researcher’s website provided only a correlation matrix, without the estimation of
Correlation Entropy. In the end, the tool provides a good insight into the Probability
Distribution of sections.

The only true limitation we can identify in this research is the limited scope of objects and

8 2| Background and Motivation

OS considered. In fact, as mentioned in the previous section, ASLR performance is related
to many runtime conditions as memory fragmentation, thread execution, and allocation
patterns, so the allocation of multiple objects per section and multiple threads can lead
to a change in randomization performance. The same considerations are valid for their
MacOS analysis, however, it’s not clear how the samples for this system were collected
as the randomization is performed only at boot time. No other research is available on
MacOS platform.

2.4.2. Windows

For what concerns Windows, as far as we know, there are only three published research
available. The first, regarding Windows Vista [28], is outdated, so we will focus only on
the ones analyzing Windows 10 [5] and Windows 7 [2].

The sampling of Windows 10 was performed through 5000 reboots using a custom-written
tool, which took a total of 500,000 samples, while for the sections that were randomized
at runtime 5 mln samples were considered [5]. The results are not publicly available but,
based on the researcher’s claims, they were able to estimate the Absolute Entropy of
memory objects, probability distribution, and their correlation; however, no mention of
Correlation Entropy was made and they just considered the main execution flow, without
launching multiple threads; moreover, as in the case of ASLR-A, no attention to doing
multiple allocations of different sizes where taken [4].

The analysis of Windows 7 [2], even if is outdated and considered only 4 memory sections,
concluded that the problems highlighted in Windows Vista [28] were still present, enforcing
one more time the importance of doing this type of research.

2.4.3. Android

At the moment no quantitative research on Android randomization performance is avail-
able. Over the years many pointed out that PRNG on Android have low entropy [3, 8],
moreover, because every process is forked from Zygote, we can expect poor runtime per-
formance of ASLR [10].

Another problem of Android security is the customization made by vendors [11]. This
aspect is hard to analyze due to the fragmentation of the android hardware and vendors, so
we decided to analyze the performance of Android 13 emulated by the Android emulation
suite.

2| Background and Motivation 9

2.4.4. Limitations and Improvements

All mentioned research have at least one of the following limitation:

• Lack of a broad OS analysis

• Missing thread execution

• Inadequate sampling size

• Few sections considered

• No multiple allocations considered

• Missing Correlation Entropy estimation

• Unclear entropy estimator choice

This last point is strictly related to the inadequate sampling size. For example, to obtain
an accurate estimation using direct Shannon entropy we need O

(
k

log(k)

)
samples where

k is the number of symbols considered [1]. As mentioned before the maximum entropy
obtainable on the considered system is 35-bit so a k size of 235. To Estimate the entropy
using the Shannon formula we will need 235

log10(2
35)

= 3.261.159.434 samples which are way
too much to be collected in reasonable time. Even if we consider the best in class, Linux,
that in some sections comes close to 30-bit of entropy, we are still considering hundreds
of millions of samples to be collected. This problem is even more relevant when we take
into consideration reboot times, so we need a less greedy estimator.

The use of Shannon at the byte level or other sorts of plug-in methods is a good approach,
reducing significantly the number of samples needed to obtain a good estimation, however,
they tend to overestimate the value of entropy due to outliers or due to non-uniform
distribution.

The bit-flipping and other bit mask estimators are an indicator of the changing bits of
the address and only give a rough upper bound to the entropy value.

11

3| Approach

Analyzing the performance of ASLR implementation is a task that can be approached in
two different ways. The first is to read the actual implementation code inside the kernel
of the OS and try to mathematically estimate the entropy of each allocated object based
on the mechanism of the randomization algorithm. Walking this path is extremely diffi-
cult for various reasons; the main trivial limitation is that we deal with closed-source OS
like Windows and MacOS, so finding the source code of the exact implementation we are
dealing with is practically impossible. Even if we perform this analysis on Open Source
Kernels like Linux, or from the point of view of the manufacturer, there are runtime inter-
actions between memory objects, such as memory fragmentation and allocation patterns,
that can significantly change the results. Because of that, the empirical analysis is by far
the simpler and most accurate to represent the behavior of ASLR. This approach is the
one we have chosen and consists in taking many samples using an ad-hoc script and then
performing statistical analysis on the data.

3.1. Sampling

For the sampling phase, the main focus is efficiency and granularity of information. We
wanted to emulate the behavior of real-world software to provide information about the
effort needed to hit a specific object in memory, and not only the page it belongs to. On
one hand, we need as much data as possible to better analyze the ASLR performance
across the different operating systems, on the other hand, the resources at our disposal
are limited. Fortunately, we can define a unique subset of objects and allocation sizes,
shared across all considered platforms, able to provide a solid picture of the ASLR details
in an efficient and homogeneous way.

3.1.1. Memory Objects

Facing the problem of choosing which memory object and sections to sample in our
research we decided to focus on the interactions and correlations between objects; as
a consequence, our sampling program makes multiple allocations of different sizes from

12 3| Approach

3 different flows: two independent threads and the main(). Because of this the total
number of addresses collected with each sample is around 60 (accounting some platform
limitations), thus in the following list we used two placeholders to keep things tight and
reduce repetitions.

The placeholders are:

• @ is used to indicate the flow responsible for the allocation of that object and can
be:

– M if it comes from the main flow

– ThA or ThB if it was allocated inside one of the two threads

• SIZE is used to indicate the size, more on that in the Section 3.1.2

• # is used to indicate multiplicity and can be:

– 1 if is the first allocated for that size and flow

– 2 if is the second allocated for that size and flow

Must be noted that not every OS has the same characteristics, but we tried to standardize
the sampling by using the same nomenclature for objects that are used in the same way
across platforms.

Here is the list of each object name with a description:

• malloc_SIZE_@__# is the address of an object allocated using the malloc() function
having SIZE as in Section 3.1.2.

• mmap_single_@__# is the address of an object of one memory page size allocated
using:

– mmap() function with size 4KB on Linux, Android.

– VirtualAlloc() function with size 4KB on Windows.

– mmap() function with size 16KB on MacOS M1.

• mmap_huge_@__# is the address of an object allocated using:

– mmap() function with the MAP_HUGETLB|MAP_HUGE_2MB flags set on Linux.

– VirtualAlloc() with MEM_LARGE_PAGES flag on Windows.

– MacOS and Android are unable to use Huge Pages.

• stack_var_@ is the address of a local variable placed on the stack.

3| Approach 13

• tls_var_@ is the address of a global variable that is allocated on Thread Local
Storage (TLS) declared with:

– "__thread" on Linux, MacOS, and Android.

– "__declspec(thread)" on Windows.

• argv is the address of the parameters passed to the program when called.

• env is the address of the environment variable.

• global_var is the address of a global variable.

• shared_M__# is the address of a shared memory object mapped using:

– MapViewOfFile() on Windows.

– shmat() on MacOS and Linux.

• lib__# is the address of a loaded library.

• text is the address of the text area.

We decided to not include some sections in our analysis, mainly regarding not executable
pages that are loaded consecutively to other sections so their sampling wouldn’t have
added more information. In particular, we omitted:

• .data and .bss on Linux, Android and MacOS.

• .data, .rdata, .pdata, _RDATA and .reloc on Windows.

as they are always loaded after the .text segment. At the same time .vsyscall is omitted
because for compatibility reasons on Linux is fixed at ffffffffff600000 [24].

14 3| Approach

3.1.2. Allocation Size Choice

It is common for OS to use different types of allocation methods for requests of different
sizes in order to optimize performance. For instance, Linux uses a threshold of 128KB to
decide whether to use the legacy system sbrk() or the mmap() function as an allocation
method; moreover, this threshold is variable and is optimized at runtime based on the
allocation pattern [22] of the program so we cannot take that for granted. Since the
introduction of Folios in Linux 5.18 [23] we have one more variation of allocation method
for mmap() of sizes >2MB, with huge impact on randomization entropy, as we will see in
Section 5.1.2

The solution to this problem was to sample in advance a large number of sizes, ranging
from 16B and doubling the size of each allocation to 128MB. In total, we sampled 24
different sizes, and then using an ad-hoc script we checked the position of each allocation
inside the Virtual Memory Mappings. By doing so we were able to identify the various
threshold for our specific program, OS and allocation strategy exploited by the Kernel.
By plotting the results in a table, we then identified a subset of 6 allocation sizes capable
of stressing all and each memory segment and allocation technology that we identified,
presented in Table 3.1.

16B 512B 4KB 256KB 4MB 128MB
Linux 6.4 [heap] sbrk() mmap() mmap() folio

Linux 5.17 [heap] sbrk() mmap()

MacOS M1 22.04 M_NANO M_TINY M_SMALL M_MEDIUM M_LARGE

Windows 11 [heap] NA NA

Table 3.1: Selected Sizes with allocation segment

We excluded Android from the table, because we have seen that its allocation algorithm,
SCUDO, allocates every element in a different segment, so we are already oversampling.
Anyway, it will sill be useful to highlight any difference in randomization entropy between
different sizes.

In conclusion the allocation sizes choosen for the analysis are: 16B, 512B, 4KB, 256KB,
4MB, 128MB.

3| Approach 15

3.2. Pre-processing and Analysis

The pre-processing phase was guided by the need to reduce the space complexity of the
data and also prepare the data to be processed in an efficient way, and we will discuss the
implementation choices in Section 4.2.

Regarding the Analysis module, we had to choose which statistics to include in our analysis
work. We will discuss them in the following sections.

3.2.1. Probability Distribution

Figure 3.1: Combined KDE and Histogram plot example

The first thing that we wanted to check was the Probability Distribution shape, to do
so for discrete distribution we have 2 main tools: Kernel Density Estimation and Binned
Histogram.

The Kernel Density Estimator (KDE) is a non-parametric method used to estimate the
probability distribution of a dataset, continuous or discrete. It works by placing a sym-
metric function, typically a Gaussian one, at each data sample position on a plot, and
then, combining the contribution of these function graphs, it forms an estimate of the un-
derlying probability density function. When dealing with discrete distribution we have to
be careful of the possible misbehavior, mainly related to the smoothing of the final func-
tion. For instance, a dataset containing only one value repeated over and over would be
plotted as a Gaussian function instead of a vertical bar because of the way the estimation
is built.

To overcome this problem we should pair this method with other discrete visualization
methods like Binned Histogram plot, as shown in Figure 3.1. This plot represents the dis-

16 3| Approach

crete nature of the dataset but not without challenges, in fact the bin size may have a large
impact on the outcome of the analysis. In the end, through trials and errors, we choose to
settle with the auto-optimized parameters offered by our graph plotting library, as they
were good enough to highlight huge discrepancies from a uniform distribution probability
in a qualitative way, as the lack of uniformity will be also reported quantitatively in the
Absolute Entropy analysis.

3.2.2. Entropy Estimator

The most important quantitative parameter that we want to analyze is Information En-
tropy, which is a concept introduced by Shannon [19] in 1948 that measure the informa-
tion contained in a data source. From another point of view is a way to measure the
randomness. In the context of ASLR, which is a system that incorporates the approach
of “security through obscurity”, entropy is directly linked to the effort needed to guess the
current position of a memory object in terms of trials. Because of that, having a reliable
way to estimate the entropy is a crucial part of ASLR analysis.

As mentioned in Section 2.2.1 we are dealing with addresses the size of 47bit (127TB of
addressed space) so exhaustively sampling all values of our source is practically impossible.
Moreover, to use the Shannon Entropy estimator we need more than one sample for each
bin, so the number is even bigger. We are dealing with an under-sampled discrete source
analysis so we must use an estimator suited for this task.

The most common method to estimate Shannon entropy is to consider each byte (or a
subset of bytes of the address) as an independent random variable and then combine
the resulting entropy to estimate the one of the complete addresses (also called Plugin
Entropy). Even if in theory it’s a good method, we considered the assumption about the
independence of bytes with regard to each other too strong to be stated generally true.
To completely avoid this assumption we decided to use a not-binned estimator.

The best option we found is the so-called Nemenman, Shafee, Bialek (NSB) estimator [16,
17], which is a coincidence-based estimator that also provides us with posterior standard
deviation to quantify the uncertainty in the estimation result. Because of this, is still one
of the best estimators for under-sampled sources, outperforming both Shannon Entropy
and Plugin Entropy [7]. It has a bias of 2

S
2

N
[16] where S is the unknown entropy and N

is the number of samples. Thus, we can calculate the number of samples we will need in
the worst-case scenario to have a bias of less than 5% (0.05) based on the expected final
entropy.

In our Absolute Entropy analysis we will encounter, as shown in Section 2.2.1, a maximum

3| Approach 17

theoretical entropy of 35 bit (S) so we will need to acquire a maximum of:

0.05 > 2
35
2

N
⇒ N > 2

35
2

0.05
= 3,707,276 samples

This method is suitable also for the Correlation Entropy estimation. In the case of Positive
Correlation the resulting entropy will be lower than the entropy of the starting section
so we will experience a less or equal bias than the absolute one. In the case of Negative
Correlation, when the two starting sections are independent, we will see an increase in
entropy and so an increment of the bias, if we leave the number of samples unchanged;
we can accept this because we are mainly interested in evaluating Positive Correlation
entropy, so accurate values for the Negative Correlated sections are not the priority.

3.2.3. Sample Decision

Following the rule presented in Section 3.2.2 we identified the sample lower threshold for
each Operating System. To do so, we took several samples and rebooted the OS many
times to build an estimate of how many samples we needed to take to obtain a bias lower
than 5%. Bear in mind that the resulting bias will be way lower than that, in many
objects under 1%, so this is just an upper bound to start with.

Sometimes we used the changing bitmask as an upper bound for entropy, in other cases,
when the number would have been too high to be collected in a reasonable time, we refined
the estimate using binned Shannon or NSB.

These are the calculated thresholds for the single boot scenario with the methodology
used:

Linux 5.17.15 and 6.4.9:

• Max Theoretical Entropy: 35 bits

• Min Samples: 3,800,000

Windows 11:

• Max Theoretical Entropy: 35 bit

• Min Samples: 3,800,000

MacOS M1 Native:

• Max Changing Bitmask: 19 bit

• Min Samples: 15,000

MacOS M1 Rosetta:

18 3| Approach

• Max Changing Bitmask: 19 bit

• Min Samples: 15,000

Unfortunately, the reboot process is very slow so we cannot take millions of reboot sam-
ples, and we have to carefully estimate the numbers. One possible approach is to take
a few thousand reboots and then compute a rough estimate on the entropy (S) of the
interested sections using bitmask.

These are the results we calculated:

Windows 11:

• global_variable and .text sections: 17-bit changing

• Libraries: 18-bit changing

• Estimated number of reboots to obtain a 5% confidence: 10,000

MacOS ARM M1:

• Libraries: 16-bit changing

• Estimated number of reboots to obtain a 5% confidence: 5,000

MacOS Rosetta M1:

• Libraries: 15-bit changing

• Estimated number of reboots to obtain a 5% confidence: 3,600

Because the sampling process and the rebooting process on Android platform are very
slow compared to other operating systems, we decided to recalculate the estimate for the
number of samples to be taken also for the single boot scenario. After taking a thousand
samples we checked the bitmask for the various sections and the maximum number of
changing bits was 23, inside the .text section. This leaves us with around 58,000 samples
to be taken. Another round of tests, refining the results with NSB suggested that 10,000
samples were enough.

For the multiple reboot scenario, we took one hundred samples for one hundred reboots
and calculated the bitmask as seen in the previous sections. Unfortunately, it seems
that Android changes most of the address bits during reboot, as we found changing
bitmask of 33 bit. Trying to perform enough reboots to cover the possibility of such a
large estimated entropy is out of our capabilities as it will take almost 1900000 reboots;
spending around 20 seconds for each reboot it will take us more than a full year. The
experience tells us that the final entropy will be way lower than the changing bitmask, so

3| Approach 19

we decided to go incrementally and stop when we feel satisfied using the posterior standard
deviation provided by NSB estimator. In the end, we settled doing 3,000 reboots achieving
a bias lower than 1%.

Android 13:

• Max estimated entropy: 16 bit

• Min Samples: 5,000

• Min Reboots: 3,000

21

4| Implementation Details

As we can see in Figure 4.1 our analysis tool it’s divided into three main components:

• Sampling Module: Runs on a remote machine or VMs and takes millions of
samples storing them as raw data.

• Pre-processing Module: Ingest the raw data generated by the sampling module
and convert it to integer format.

• Analysis Module: Performs statistical analysis on the data, estimating Absolute
Entropy, Correlation Entropy, and providing different statistics.

In the next sections, we are going to present in detail this architecture, describing the
choices we made, the challenges we have faced, and how we overcome them.

Figure 4.1: Architecture of the ASLR analysing tool

4.1. Sampling

The information we are seeking is the addresses of memory objects and they are usually
contained inside the Virtual Memory Mappings (VMM). The VMM for Linux and
Android are stored in the form of text files and can be read using the command cat

/proc/PID/maps where PID is the process id of the process we are interested in. On
MacOS and Windows, we are forced to use their proprietary tools called “VMMap” to

22 4| Implementation Details

Figure 4.2: Architecture of Sampling Module

access this information. Even if is possible to automate the retrieval process in both cases,
so we can use that to build our sampling tool, in doing so we face some serious limitations
in terms of sampling speed and information granularity. Every sample, especially on
Windows and MacOS, takes a couple of seconds to be retrieved and this is unacceptable
when we need millions of them; moreover, the Memory Mappings information does not
have the granularity that we need as they report only the page allocation and do not
specify the membership of objects, needed to analyze the intra-page entropy of allocations.
The solution we have found is to use an ad-hoc tool suite represented in Figure 4.2,
the Sampling Module. To achieve the desired accuracy in the results of our analysis we
calculated that we will need around 3,8 Mln samples, so reducing the time spent doing
each sample is crucial. This module needs to have access to memory at a low level, and
it needs to do it fast so we used C language to write the Sampling Program. We need
to do this sampling process for various operating systems, with less tuning as possible,
to avoid rewriting the same code over and over; using C code in the allocation part of
our sampling module lets us reuse most of the code on every platform and just adapt
the few specific functions that are platform-dependent. During collection and storage,
we need easy access to various high-level operations such as file management, directory
compression, bash commands, and more; thus, for the Sampling Launcher, the Python
language was the best choice. This approach is hundreds of times faster than the VMM
approach, reaching speeds of around 4000 sample/s on Linux and 300 sample/s on MacOS
and Windows.

The last script we need to present is the Rebooting Script, which are various bash script
that: uses the Sampling Launcher to perform a sampling routine at each reboot and

4| Implementation Details 23

reboot the operating system autonomously.

Unfortunately, the Sampling for Android cannot be done in the same way, so it was done
using an ad-hoc application written in Java that calls a C++ code performing the sample,
and then the results were collected using a bash script. We will discuss it in Section 4.1.4.

In the following, we will present in detail each component of this module.

4.1.1. Sampling Program

The sampling program was written in C language for desktop OS and in C++ for An-
droid. The main structure was the same for all programs, changing only the system calls
needed to perform various operations like memory allocations and thread launching. It
instantiates and allocates many objects in different memory sections, and then prints
the addresses of those objects on the standard output to be retrieved by the Sampling
Launcher. Because the memory is mainly randomized at the program launch, the sampling
program needs only to gather a single sample for each object mentioned in Section 3.1.1
and then exit.

Algorithm 4.1 Sampling Program
1: comm[8] ▷ A support variable
2: gloabl_var ▷ A global var address
3: __thread tls_variable ▷ A var stored in TLS
4:
5: procedure main(argc, argv)
6: tag ← "M"
7: stack_var_main← pointer to stack
8: tls_var ← pointer to TLS
9: env ← getenv

10:
11: shared_mem_1← Shmat(id1)
12: shared_mem_2← Shmat(id2)
13:
14: CREATE_THREAD(THREAD_FUNC, 1)
15: CREATE_THREAD(THREAD_FUNC, 2)
16:
17: ALLOCATION_FUNC(index, 0, tag)
18: ALLOCATION_FUNC(index, 1, tag)
19:
20: print comm and all sampled addresses
21: end procedure

The main structure of this program is the one presented in Algorithm 4.1 and is composed

24 4| Implementation Details

by these main steps:

1. Declaration of three global variables:

• One array of 8 strings called comm to save the addresses from the various allo-
cation.

• One global variable called global_var to obtain the address of a global vari-
able.

• One global variable declared using __thread called tls_var to obtain the
address of the various Thread Local Storage (TLS).

2. Declaration of a local variable called stack_var_main to obtain the main stack
address.

3. Recall the current PID, used to double-check the sampling process.

4. Request two shared memory segments (Only Desktop platforms).

5. Two ALLOCATION_FUNC() calls as in Algorithm 4.2

6. Recall the address of the environmental variables.

7. Creation of two threads with the function presented in Algorithm 4.3 that each:

• Declaration of a local variable called stack_var_th to obtain the thread stack
address.

• Two ALLOCATION_FUNC() as in Algorithm 4.2 .

• Saving the resulting addresses on comm array as a string.

8. Printing of all sampled addresses as a string on the standard output.

The ALLOCATION_FUNC() presented in Algorithm 4.2 performs several allocations, follow-
ing the sizes individuated in Algorithm 3.1.2 and saves by itself the results on comm array
as a string.

The code needed to be adapted between various OS in particular:

• The included libraries needed to be changed according to OS needs.

• MacOS and Android do not have huge pages to be sampled.

• Android does not have the same shared memory mechanism to be sampled.

• The flag used by the various library functions are different.

4| Implementation Details 25

Algorithm 4.2 Allocation Function
1: function ALLOCATION_FUNC(i,multiplicity, tag)
2:
3: malloc_16B ←Malloc(16B)
4: malloc_512B ←Malloc(512B)
5: malloc_4KB ←Malloc(4KB)
6: malloc_256KB ←Malloc(256KB)
7: malloc_4MB ←Malloc(4MB)
8: malloc_128MB ←Malloc(128MB)
9:

10: mmap_single←Mmap(singl_page_size)
11: mmap_huge←Mmap(huge_page_size,MAP_HUGETLB|MAP_HUGE_2MB)
12:
13: index← (2 ∗ i) +multiplicity − 1
14:
15: Builds a string of labels and addresses
16:
17: Save string in comm[index] global var
18: end function

Moreover, the Windows implementation of this sampling program required many ad-hoc
modifications:

• The mmap() function was replaced with the VirtualAlloc() function.

• To allocate huge pages, a special token must be requested by the function to the
kernel to gain such privileges using an ad-hoc function.

• DLLs must be loaded explicitly to sample libraries’ address.

• Various functions’ names changed.

The sampling programs are compiled using:

• Linux: gcc -pthread -w program.c -o program -lm (we use math libraries to
sample the lib position so -lm is needed).

• Windows: cl /Feprogram.exe /Foprogram.obj program.c -w.

• MacOS: gcc -pthread -w program.c -o program.

The easiest way to compile a program to run using Rosetta on MacOS is to run the
terminal using Rosetta and then run the compilation procedure inside. Must be noted
that on recent versions of gcc compiler the programs are compiled by default using the
flag -fPIE to permit the ASLR system to work and improve security, so it is no more
needed. Also cl does not need a custom flag to produce such executable. To double-check

26 4| Implementation Details

the correctness of these assumptions we verified the header of the executable inside the
Sampling Launcher before each run.

Algorithm 4.3 Thread Function
1: function THREAD_FUNC(index)
2:
3: stack_var ← pointer to thread stack
4: tls_var ← pointer to TLS
5:
6: Builds a string of labels and addresses
7: Save string in comm[index] global var
8:
9: if index == 1 then

10: tag ← "ThA"
11: else
12: tag ← "ThB"
13: end if
14:
15: ALLOCATION_FUNC(index, 0, tag)
16: ALLOCATION_FUNC(index, 1, tag)
17: end function

4.1.2. Sampling Launcher

The Sampling Launcher is a set of Python classes that manages the sampling process. The
number of threads involved varies between each OS, and so are the pre-sampling checks,
thus a series of sub-classes and tuned configurations are used and chosen autonomously
when the sampling process is started.

The first thing it does is run checks to assure that the environment is set correctly:

1. Recompiles the executable of the sampling program as described in Section 4.1.1 to
assure we are using the up-to-date version.

2. Checks the headers of the just compiled executable to verify that it is compiled for
the correct architecture we are targeting (especially important on MacOS).

3. Checks the headers of the just compiled executable to confirm that it is indeed a
Position-Independent Executable (PIE):

• Linux: the presence of "pie" string in the output of file command.

• Windows: the presence of "Dynamic base" and "High Entropy Virtual
Addresses" strings in the output of dumpbin /headers command.

4| Implementation Details 27

• MacOS: the presence of "pie" string in the output of otool -hv command.

4. Enables huge pages with sudo -S sysctl -w vm.nr_hugepages=512 (Linux only).

5. Checks that Address Space Layout Randomization (ASLR) is active with the max-
imum entropy available.

The feasibility of verifying the status of Address Space Layout Randomization (ASLR)
varies across different operating systems due to limitations. On Linux, ASLR status
can be assessed by examining the output of the command cat /proc/sys/kernel/

randomize_va_space. A value of 0 indicates that ASLR is disabled, a value of 1 sig-
nifies Conservative Randomization wherein brk() memory regions remain unrandomized,
and a value of 2 corresponds to Full Randomization. For Windows 11, a direct system-
wide ASLR status check is not available, therefore, a manual inspection of the Exploit
Prevention settings within the control panel is necessary. It is crucial to ensure that both
Bottom-up ASLR and High-Entropy ASLR settings are activated. In contrast, MacOS
does not provide an option to modify the default ASLR setting (enabled); moreover, direct
verification of this setting is not feasible within MacOS.

After these checks, combined with the checks regarding the executable headers we can
be comfortable starting the sampling process spawning various threads to increase the
sampling speed. We noticed that disabling Real-Time Threat Protection on Windows 11
doubled the sampling speed, so we turned that off during the sampling process. The tool
provides a CLI to monitor the progress, speeds, and also an estimated time of finish.

The samples are collected directly from the standard output of the Sampling program
and then saved on different text files after a buffer is filled, one for each thread, to
avoid concurrency issues and to reduce the number of writes to storage. At the end of
the sampling process the files are compressed into a zip archive and the checksum of
the archive is compiled and saved along with other metadata in a text file, ready to be
transferred to the pre-processing module.

4.1.3. Rebooting Script

As mentioned in Section 2.1.1, MacOS, Windows 11, and Android randomize some sections
only at system startup. Even if for a local attacker this is a huge advantage, as every
process shares the same addresses, in a distributed attack scenario when we can target
multiple devices at once, the study of the entropy of those sections is very relevant. To
do so the only way is to reboot our device to force the randomization of sections and then
take a certain amount of sample each reboot.

28 4| Implementation Details

Even if the rebooting script is customized for each Operating System the main structure
is the same for both Windows 11 and MacOS and is the following:

1. Write the number of reboots we want to perform to a file called counter.txt.

2. Set the number of samples we want to take at each reboot.

3. Start the sampling using the Sampling Launcher.

4. Decrease the counter, write the updated value to counter.txt, and then reboot.

In Algorithm 4.4 we described the pseudo-code of this script. We add the script as a
startup application so that the process could be automated; to do so, we have to remove
any disk protection and user password, so that the system can be restarted without human
intervention.

For what concerns Android the approach is a little different and we are going to discuss
it in Section 4.1.4

Algorithm 4.4 Rebooting Script
1: procedure
2:
3: SAMPLE ← samples at reboot
4: COUNT ← counter.txt ▷ reboots to perform
5: STOP ← 0 ▷ when we want to stop
6:
7: if COUNT < STOP then
8: OUTPUT(”SamplingF inished”)
9: EXIT

10: end if
11:
12: sampling_launcher.py(SAMPLE,COUNT) ▷ starts the sampling
13: counter.txt ← COUNT ▷ reboots to perform
14: REBOOT
15:
16: end procedure

4.1.4. Android

To analyze ASLR performance on Android we cannot use the same approach seen with
other Operating Systems as it runs only APK applications written in Java or Kotlin.
Our Sample Launcher is no longer useful, as it runs in Python, so we have to develop a
new approach from scratch to extract information from the device and save them. Using
Android Studio we have written a simple Java App that loads a library, containing the

4| Implementation Details 29

same Sampling Program seen in Algorithm 4.1 slightly adapted and written in C++. In
particular, two crucial customization were made:

• To extract the information we can no longer use the standard output, but we have
to rely on the logging functionality __android_log_print(), as it is accessible from
outside the device using ADB.

• To restart the application to collect samples without rebooting the device, we added
an exit(1) at the end of the code to inject a failure and make the application restart
way faster than doing it manually using ADB.

Algorithm 4.5 Android Reboot Launcher
1: procedure
2:
3: SAMPLES ← samples at reboot
4: REBOOT ← reboots to perform
5: DEV ICES ← n.virtual devices
6:
7: for DEV ICES do
8: emulator(@Device_1, read− only, cold− boot)
9: end for

10:
11: while not all devices are online do
12: sleep(10)
13: end while
14:
15: R_DEV ← REBOOT/DEV ICES ▷ number of reboot for each device
16:
17: for each running device do
18: device_handler(device_name,R_DEV, SAMPLES)
19: end for
20:
21:
22: end procedure

This application can now be compiled and loaded inside the chosen device. Even
though we could use a hardware device and then control the process using ADB
commands, the integration of Android Emulator inside Android Studio made the
emulation path the best choice, both for reproducibility and simplicity. Android
Emulator (AE) is software that emulates an Android device using the selected An-
droid version and provides various customization. The one that is relevant for our
research is the ability to perform a hot-start, enabled by default, using a previous
ram image to reduce startup time. Unfortunately, this feature impact negatively

30 4| Implementation Details

on our research as we want the device to renew the memory layout every time we
restart it, so we have to make sure is disabled; as a consequence, the reboot now is
way slower, but it randomizes memory as we expect from an actual hardware de-
vice. AE is a convenient choice also because it is fully usable inside the terminal in
headless mode, so we can control both the virtual device and the logging procedure
using bash scripts.

We built two scripts: Android Reboot Launcher (Algorithm 4.5) and Device Handler
(Algorithm 4.6). The first script launches as many Android emulator devices as
needed, in headless mode and without using a snapshot (Cold-boot); then it waits
for each device to come online and it calls another script, the Device Handler, passing
to it the device name, the number of samples requested and the number of reboots
needed for that specific device. Using multiple devices, in theory, permits us to
parallelize a bit this very slow process of rebooting, in practice, our machine could
only handle one device at a time.

Algorithm 4.6 Device Handler
1: procedure device_handler(”DEVNAME,REBOOT, SAMPLES”)
2:
3: R_COUNTER← 0
4: S_DELAY ← 5
5: R_DELAY ← 15
6:
7:
8: while R_COUNTER < REBOOT do
9: while N_SAMPLES < SAMPLES do

10: logcat(DEV _NAME)
11: N_SAMPLES ← samplecounts
12: end while
13: reboot(DEV _NAME)
14: R_COUNTER← R_COUNTER + 1
15: sleep(10)
16: end while
17:
18: kill(DEV _NAME)
19:
20: end procedure

The Device Handler, received the device name, starts communicating with the vir-
tual device using ADB and it execute this procedure:

1. Launches the Sampling application on the device.

4| Implementation Details 31

2. Listen for the data stream coming from the device using logcat.

3. Save the stream to a text file and count the number of samples collected.

4. When the number of samples is enough, reboot the device using adb reboot.

5. When the number of reboots is enough, shut down the device and exit.

Clearly, we can use this tool also for sampling one single reboot, as we can request 1
reboot and as many samples as we want.

4.2. Preprocessing

The role of the preprocessing module is to convert and build an efficient and fast data
frame needed in the analysis phase. It starts from the text output of the sampling program
and collected by the sampling launcher.

This was done using a Python script that:

1. Extract and verify the archives coming from the remote machine.

2. Parse the content of the text files.

3. Build a .csv file with hexadecimal data.

4. Convert .csv file into .parquet integer data.

The first step is to extract and verify the checksum of all archives transferred from the
remote machines that performed the sampling precess. Because the samples are strings
with many duplicated characters (for instance, the labels and the fixed bytes of the ad-
dresses are repeated), the compression process is very efficient in keeping the dataframe
small and easily transferable; moreover, it permits us to easily check the integrity of the
data after the transmission, using a MD5 checksum: this was done to rule out any outlier
values due to file corruption.

At this point, we are left with N text file, one for each thread used in the sampling
module. This long text file, represented in Figure 4.3, contains a row for each sampled
object, and each row is composed of a label and an hexadecimal address. Each sample
run is intercalated by a special character, #, and a number used to distinguish between
them. To parse the content we use a function that opens each text file one by one, reads
the content, and builds a dictionary with the addresses; then, when we encounter a # char
we output the samples as a single long csv row, where each column represents a memory
object.

32 4| Implementation Details

#0
malloc_16B_M__1 0x600001b2c010
malloc_512B_M__1 0x7f78ef004240
malloc_4KB_M__1 0x7f78ef808200
malloc_256KB_M__1 0x7f78f0008000

...

lib__1 0x7ff80bcb9f25
lib__2 0x7ff80bda5001
text 0x100a01930
PID 775
#1
malloc_16B_M__1 0x6000021f8040

...

Figure 4.3: Example of collected text file

At the end of the parsing, we obtain a file called raw_data.csv, in Figure 4.4, containing
all sampled data in hexadecimal format, where every run belongs to a different line and
every object to a different column. The first part of the preprocessing is finished, now we
need to make the data frame more performant.

As mentioned before the data we are dealing with contains a lot of repeated characters
and the raw file we obtained is large and slow to use; moreover, the pieces of information
are stored as strings, while our analysis deals with them as integers, so the .csv format
isn’t the best candidate for our purpose. We found a good alternative in Parquet file, as
it stores data in their native format and also reduces the sizes on disks due to default
column data compression. The next part takes the raw_data.csv and after parsing the
hexadecimal addresses into a 64 bit long integer, writes them to disk in .parquet format;
this conversion is an obliged step, because neither Pandas nor Polars (the libraries used
to analyze the data) support natively hexadecimal numbers.
In the end, we obtained a fast and light data frame ready to be used.

4.3. Analysis

The Analysis process is both graphical and numerical, and we also need to control the
flow of the analysis to account for platform peculiarities. To achieve all these objectives
the best suited tool is Jupyter Notebooks with Python programming. This also provides
us with a huge choice in terms of data science libraries to perform our tasks.

4| Implementation Details 33

reboot,malloc_16B_M__1,malloc_512B_M__1,...
0,600003020040,7fb7a67046d0,7fb7a6808800,...
0,6000016ac010,7fed7f004080,7fed7f808200,...
0,60000117c010,7f9184004080,7f9184808200,...
0,600002368040,7fac6cf046d0,7fac6d008800,...
0,60000193c040,7f8217f046d0,7f8218008800,...
0,600000694040,7f96647046d0,7f9664808800,...
0,6000013a8040,7fd9377046d0,7fd937808800,...
0,600000414040,7fa687f046d0,7fa688808200,...
0,600000304020,7f7d30f04290,7f7d32008200,...
0,600003578040,7f915ef046d0,7f915f008800,...
...

Figure 4.4: Example of raw_data.csv

To isolate each step we built 6 different Jupyter Notebooks :

1. Range Calculation.

2. Memory Layout.

3. Probability Distribution.

4. Absolute Entropy Estimation.

5. Difference Calculation.

6. Correlation Entropy Estimation.

During the research phase also others were used but were not introduced in the final
analysis suite

For the graphical and data visualization portion of the analysis, we decided to use the
library Seaborn as it is a well-documented and broadly used tool based on the famous
Matplotlib. It joins the simplicity of pre-build templates and graphing methods, without
compromising on functionality and flexibility thanks to its Matplotlib backbone. We used
this library for the Probability Distribution Plot and the Memory Layout. The first is
a self-adapting-size subplot, composed of several histograms drawn using the histplot

function, one for each memory object sampled. The second is a customized scatterplot,
usually used to visualize the distribution of a group of points in a 2-dimensional space.
In our case, we wanted to draw a figure representing the position of the various objects
inside the memory so we were interested in a single dimension; however, plotting all 60
objects on a single line would be chaotic, so using the scatterplot we spaced them on
the Y ax while having the addresses on the X ax.

34 4| Implementation Details

The management of data frames (loading, manipulation, and storing) was mainly done
in Pandas. This library is one of the most used data scientist tools thanks to its com-
munity support and exhaustive documentation. The only drawback we found is the slow
performance when dealing with very large datasets. In those rare cases, that appeared
only during the research phase and were excluded in the final analysis pipeline, we used
Polars, a performance-optimized data science library that permits streaming of the data
without loading the entire set in memory.

To perform the entropy estimation, as mentioned in Section 3.2.2, we had various choices
in terms of algorithms; the final choice was the NSB algorithm. Lucky for us the algo-
rithm was already implemented in Python language in the open source library ndd by
Simone Marsili [15]. This tool was used both in the estimation of Absolute Entropy and
Correlation Entropy. To use it we needed to first calculate the number of addresses with
non-zero probability of being used by ASLR. We used the difference between the highest
and lowest address of each object, to identify the range. In theory, the range isn’t the
real number of possible addresses as we didn’t account for the fixed page offset, however,
this aspect was revealed to be of minor importance during testing; moreover, the page
offset is one of the main problems when we consider ASLR performance so including that
in the range of possibility was considered a fair approximation.

To calculate the Correlation Entropy we need to consider the concept of distance inside
memory, better known as offset. To calculate the distance between every object to each
other we simply performed a column-wise subtraction. This process resulted in one data
frame for each object considered, in our case around 60, each one the size of the original
in terms of column numbers and rows; also, disk space occupation for each one was
comparable with the original. In our Linux analysis, we collected around 3.8Mln samples,
that in their converted and compressed form inside a parquet file occupied 1.3GB of disk
space. Storage and manipulation of 60 data frames of this size, for each system that we
considered, was revealed to be a challenging task.

To reduce the size of those files we needed to observe the nature of the offset itself. The
entropy operates on the absolute value, so, even tho the subtraction isn’t a commutative
operation, the results for positive and negative offset are the same; because of this, we
could cut in half the time and space required by this analysis, considering only one of the
two directions of the distance between objects, and cloning the results for the other direc-
tion; this provided us with a zero-diagonal symmetrical matrix containing the Correlation
Entropy results.

35

5| Experimental Evaluation

In this section, we are going to present the tested configuration and briefly discuss the
strength and weaknesses of each system in the following categories:

• Probability Distribution

• Memory Layout

• Absolute Entropy

• Correlation Entropy

During the analysis process, we took 20 bit of entropy as the threshold of reference. We
considered good results everything above this value and bad results everything under.
This threshold is artificial, as in reality there is no real value of “safeness”, and it strongly
depends on how many tries per second (tps) an attacker is able to perform. As this
was the value used also in other research we decided to stick with it [13, 14]. Unfortunately,
there are no real metrics on the tries per second that a system can handle, as it depends on
many variables that are impossible to track, however, during this research we experienced
speeds ranging from 30 to 500 samples per second locally with consumer-grade hardware.
Remotely, is even more difficult to estimate as depends on the size of the exploit and
the network speed considered[12]. For reference, an attacker performing around 300 tps

would take on average 1 hour to successfully brute force a memory object with 20 bits
of entropy. The same attacker would be able to break the randomization of 16.5 bit of
entropy in less than a minute.

To present Absolute Entropy results we grouped the objects in categories:

• executable: text, lib__1, lib__2;

• stack: stack_var_ThA, stack_var_ThB, stack_var_M;

• mmap(): all object allocated using mmap() or VirtAlloc() without using huge
pages;

• main malloc(): all object allocated using malloc() from the main();

36 5| Experimental Evaluation

• thread malloc(): all object allocated using malloc() from thread ThA and ThB;

• 1st malloc(): the first allocated object using malloc() from thread ThA, ThB and
main();

• 2nd malloc(): the second allocated object using malloc() from thread ThA, ThB
and main();

• mmap() huge: all object allocated using mmap() or VirtAlloc() with huge pages;

• 16B: all object allocated using malloc(16B);

• 512B: all object allocated using malloc(512B);

• 4KB: all object allocated using malloc(4KB);

• 256KB: all object allocated using malloc(256KB);

• 4MB: all object allocated using malloc(4MB);

• 128MB: all object allocated using malloc(128MB);

• shared: shared_M__1, shared_M__2;

• other: argv, env, global_var, tls_var_ThA, tls_var_ThB, tls_var_M;

For each group, we show the minimum (MIN) and maximum entropy (MAX), useful
for identifying the low-performance objects and the best-performing ones. The minimum
is by far the most relevant information, as the object having minimum entropy will be
the preferred target in case of an attack. On the other hand, the maximum gives an
upper bound to group performance, and a very low maximum entropy may be a sign of
a broken ASLR implementation. In addition, we calculated the average entropy (AVG)
to better frame the overall behavior of the group. The group’s division has been made to
cover most of the possible categorizations considered, so you can match the information
of different groups to spot weaknesses.

5| Experimental Evaluation 37

Figure 5.1: Memory Layout Linux 5.17.15

Hypervisor QEMU 7.1.0
CPU i7-4790K
RAM 32GB RAM

Table 5.1: General Configuration Linux

5.1. Linux

All Linux sampling was executed running the OS inside an emulated environment with
hardware and software configuration as in Table 5.1. The specific sampling configuration
for kernel versions 5.17.15 and 6.4.9 are indicated respectively in Table 5.2 and Table 5.5.
Linux kernel does not randomize objects at boot but every time a process is launched,
the samples are collected in a single boot instance.

5.1.1. Linux 5.17.15

Memory Layout. As we can se in Figure 5.1 the memory layout is mainly divided
into 2 sections with a large empty section in the middle: on the left, starting with lower
addresses, we have the section used by the kernel to store allocations under 256KB, such
as those positioned in the heap using sbrk(), and the text segment; on the right of the
image, positioned among high memory addresses, we have the mmap() segments where
libraries and allocations greater than 256KB are located. Additionally, the main stack
also belongs to this section, though its span is relatively minor compared to others. It’s
important to note that while addresses may be closer together, this is not necessarily an

38 5| Experimental Evaluation

OS Ubuntu 23.04
Architecture x86_64
Kernel Linux 5.17.15
Lib GLibC 2.37
First Boot Samples 3,800,000

Table 5.2: Information Linux 5.17.15 Sampling

MIN MAX AVG MIN MAX AVG
executable 27.41 27.41 27.41 16B 14.74 27.41 19.03
stack 19.02 27.40 21.81 512B 14.74 27.41 19.03
mmap() 27.41 27.41 27.41 4KB 14.74 27.41 19.03
main malloc() 27.41 27.41 27.41 256KB 23.72 27.41 25.04
thread malloc() 14.74 24.77 17.39 4MB 18.93 27.41 20.76
1st malloc() 14.74 27.41 20.78 128MB 15.66 27.41 18.66
2nd malloc() 14.74 27.41 19.73 shared 27.41 27.41 27.41
mmap() huge 18.71 19.02 18.87 other 19.02 27.41 23.79

Table 5.3: Entropy Groups Linux 5.17.15

indication of low entropy, as it depends on the density. However this grouping suggest
high presence of correlation between objects in particular the ones allocated using mmap().

Probability Distribution. From Figure A.1 the probability distribution It appear
uniform, without raising significant concerns under in this aspect. The graph represents
the desired randomization distribution across all memory sections.

Absolute Entropy. Looking at Table 5.3 we see that the entropy of stack objects varies
from a nearly acceptable 19 bit to an excellent 27.4 bit; further inspection at complete
data in Table A.1 tells that the best performing one is the main stack while the low
entropy one belongs to threads. We know from the documentation of pthread_create()
that the default size of the thread stack is 2MB [9]; being the thread stack allocated with
mmap() function we see that the entropy of the 2MB thread stack and the 4MB malloc()

are very similar, so this is the regular behavior. All executable objects, text, lib__1 and
lib__2 perform greatly with over 27 bit of entropy. In general, we can observe a difference
between objects allocated by the main program flow and the ones allocated by threads.
Regarding the main flow, the first round of allocations experiences an excellent 27.4 bits
of entropy, except for the mmap() using huge pages, which stops at around 19.6 bits; this
reduction is expected as huge pages use larger page-offset: 12 bit for 4KB pages versus
21 bit for 2MB huge pages. A reduction in entropy is clearly visible during the second
round of allocations greater than 4 MB, dropping as low as 15.66 bits; this highlights
how the allocation pattern significantly affects the performance of ASLR, as the available

5| Experimental Evaluation 39

path ent diff path ent diff
lib_1 ← lib_2 0.00 -27.41 lib ← malloc_512B_Th 15.15 -12.25
lib ← tls_var_M 0.00 -27.41 lib ← malloc_16B_Th 15.15 -12.25
lib ← shared 0.00 -27.41 lib ← mmap_single_M 0.00 -27.41
lib ← tls_var_Th 9.00 -18.41 lib ← mmap_huge_M 9.00 -18.41
lib ← stack_var_Th 9.00 -18.41 lib ← malloc_128MB_M 0.00 -27.41
lib ← mmap_single_Th 0.98 -26.43 lib ← malloc_4MB_M 0.00 -27.41
lib ← mmap_huge_Th 11.54 -15.87 lib ← malloc_256KB_M 0.00 -27.41
lib ← malloc_128MB_Th 14.72 -12.69 text ← global_var 0.00 -27.41
lib ← malloc_4MB_Th 11.17 -16.24 text ← malloc_4KB_M 13.00 -14.41
lib ← malloc_256KB_Th 4.53 -22.88 text ← malloc_512B_M 13.00 -14.41
lib ← malloc_4KB_Th 15.15 -12.25 text ← malloc_16B_M 13.00 -14.41

Table 5.4: Positive Correlation executable path Linux 5.17.15

OS Ubuntu 23.04
Architecture x86_64
Kernel Linux 6.4.9
Lib GLibC 2.37
First Boot Samples 3,800,000

Table 5.5: Information Linux 6.4.9 Sampling

space decreases, requiring mmap() to work harder to find empty spots, thus decreasing
the absolute entropy. For threads instead, nearly all allocations have an entropy of 15
bits, while the stack and TLS (Thread Local Storage) perform better with around 19 bits.
Overall the executable objects are well-randomized while the most weak objects are the
ones belonging to threads.

Correlation Entropy. As we expected from the memory layout we can identify many
objects that have Positive Correlation with other objects; this behavior is clearly evident
in Figure A.2. Raising attention, we can see the executable objects lowering their entropy
by almost 14 bits, or in other words, a leak can reduce the attack effort by 16,000 times.
The Positive Correlation path raising warnings are presented in Table 5.4. Moreover, all
mapped area suffers from consecutive allocation.

5.1.2. Linux 6.4.9

We can see comparing Figure 5.2 and Figure 5.1 that the performance of the Linux kernel
in terms of memory layout is very consistent between the versions considered; the same
is true for the probability distribution as we can see in Figure A.3, so you can refer to
Section 5.1.1 for comments regarding these aspects.

40 5| Experimental Evaluation

Figure 5.2: Memory Layout Linux 6.4.9

MIN MAX AVG MIN MAX AVG
executable 19.02 27.41 24.61 16B 14.93 27.41 19.11
stack 19.02 27.40 21.82 512B 14.93 27.41 19.11
mmap() 27.41 27.41 27.41 4KB 14.93 27.41 19.11
main malloc() 19.61 27.41 24.55 256KB 23.50 25.83 24.29
thread malloc() 14.93 24.01 17.44 4MB 19.02 20.20 19.51
1st malloc() 14.93 27.41 19.86 128MB 16.07 19.61 17.38
2nd malloc() 14.93 27.41 19.64 shared 27.41 27.41 27.41
mmap() huge 18.80 19.02 18.90 other 19.02 27.41 23.79

Table 5.6: Entropy Groups Linux 6.4.9

Absolute Entropy. Where a difference shines is in the Absolute Entropy, in fact we can
see in Table 5.7 that now all objects greater than 2MB experience a huge reduction in
entropy; from Table A.2 we confirm the same reduction for lib__1. Further investigation
highlighted that this behavior started in version 5.18 of the Linux Kernel and is still
present in the last available version at the moment, 6.4.9, and so we choose that for our
analysis.

We tracked back the changes and found that a new memory management system is being
introduced in the Linux Kernel, with the implementation of Folios. This work started
in version 5.14 but only in version 5.18 did they activate Large Folios, so we suspect
that they may be responsible. Linux Folio is a memory structure introduced to increase
performance and reduce memory fragmentation, as it groups multiple consecutive memory
pages of 4KB, being now represented as a single bigger memory chunk. This uses neither
huge pages nor transparent huge pages and is a flexible structure, so in theory, the size is

5| Experimental Evaluation 41

path ent diff path ent diff
lib_2 ← lib_1 9.00 -18.41 lib_1 ← shared 9.00 -10.02
lib_2 ← tls_var_M 0.04 -27.37 lib_1 ← tls_var_Th 0.00 -19.02
lib_2 ← shared 0.00 -27.41 lib_1 ← stack_var_Th 0.00 -19.02
lib_2 ← tls_var_Th 9.00 -18.41 lib_1 ← mmap_single_Th 9.00 -10.02
lib_2 ← stack_var_Th 9.00 -18.41 lib_1 ← mmap_huge_Th 2.76 -16.26
lib_2 ← mmap_single_Th 1.17 -26.24 lib_1 ← malloc_128MB_Th 6.72 -12.30
lib_2 ← mmap_huge_Th 11.76 -15.65 lib_1 ← malloc_4MB_Th 2.32 -16.70
lib_2 ← malloc_128MB_Th 15.24 -12.17 lib_1 ← malloc_256KB_Th 6.23 -12.79
lib_2 ← malloc_4MB_Th 11.20 -16.21 lib_1 ← malloc_4KB_Th 6.38 -12.65
lib_2 ← malloc_256KB_Th 5.16 -22.25 lib_1 ← malloc_512B_Th 6.38 -12.65
lib_2 ← malloc_4KB_Th 15.38 -12.03 lib_1 ← malloc_16B_Th 6.38 -12.65
lib_2 ← malloc_512B_Th 15.38 -12.03 lib_1 ← mmap_single_M 9.00 -10.02
lib_2 ← malloc_16B_Th 15.38 -12.03 lib_1 ← mmap_huge_M 0.00 -19.02
lib_2 ← mmap_single_M 0.00 -27.41 lib_1 ← malloc_128MB_M 0.59 -18.44
lib_2 ← mmap_huge_M 9.00 -18.41 lib_1 ← malloc_4MB_M 0.59 -18.44
lib_2 ← malloc_128MB_M 8.74 -18.67 lib_1 ← malloc_256KB_M 8.23 -10.79
lib_2 ← malloc_4MB_M 8.74 -18.67 text ← global_var 0.00 -27.41
lib_2 ← malloc_256KB_M 1.35 -26.06 text ← malloc_4KB_M 13.00 -14.41
lib_1 ← lib_2 9.00 -10.02 text ← malloc_512B_M 13.00 -14.41
lib_1 ← tls_var_M 9.00 -10.03 text ← malloc_16B_M 13.00 -14.41

Table 5.7: Positive Correlation executable path Linux 6.4.9

not fixed. Its size is a power of two and it is aligned with its size [23], so for a Large Folio
of 2MB, we should see a page offset of 21 bits, versus the 12 bits of a 4KB page. As a
consequence, all memory objects allocated using this new structure should expect around
9 bit reduction in entropy, and our results in Table A.3 confirm that. In fact, the sampled
lib experiencing the reduction is sampled from the libc that is indeed bigger than 2MB.
This is a huge reduction for an executable memory section and gives an attacker almost
400x more chances of success compared to Linux version 5.17.15.

Correlation Entropy. Again, the Correlation Entropy matrix in Figure A.4 is very
similar to the Linux 5.17 one in Figure A.2, however, new Positive Correlation paths are
present compared to Linux 5.17.15 due to libraries not being fully correlated as before.
The updated paths are indicated in Table 5.7.

5.2. MacOS

MacOS sampling was performed on a Macbook Pro M1 2020 configured as in Table 5.8.
Being MacOS a system that randomizes executable objects only at boot, we rebooted the
machine several times to collect the samples. We sampled both Ma Precise configuration

42 5| Experimental Evaluation

OS MacOS Ventura 13.4.1
Kernel Darwin 22.5.0
CPU ARM M1
RAM 8GB Unified
Hardware Arch. arm64

Table 5.8: General Configuration MacOS

Architecture arm64
First Boot Samples 1,000,000
Reboots 5,000
Reboot Samples 500
Total Reboot Samples 2,500,000

Table 5.9: Information MacOS M1 Native Sampling

for each sample run can be found in Table 5.9 and Table 5.12.

5.2.1. MacOS M1 Native

Memory Layout. The memory on MacOS using Native ARM architecture, visible in
Figure 5.3, is mainly grouped among low addresses with only very small allocations that
belong to the so-called MALLOC_NANO area, on the higher end of the memory. This suggest
high correlation between objects.

Probability Distribution. As we can see from the graphs in Figure B.1, there are some
uniform allocation regarding the TLS objects and MALLOC_NANO objects. The others have
a distributions characterized by high spikes or large groups, indicating a very low entropy.
On some section, the randomization is probably linked to the intrinsic not deterministic
positioning of allocation and not to explicit ASLR action. Moreover, the library’s position
is fixed.

Absolute Entropy. As emerge from Table 5.10 the overall the entropy is low, with poor
randomization on executable objects: libraries are fixed, and text have insufficient ran-
domization entropy (11.5 bit). As mentioned before, the objects allocated with malloc()

are basically not randomized, with just a little bit of entropy due to uncertainty in the
optimization phase of the allocation. mmap() does better with around 12.5 bit, but still
insufficient. The complete results of Absolute Entropy analysis are provided in Table B.1.

Correlation Entropy. In the correlation matrix presented in Figure B.2 we can see an
unusual behavior where the security in terms of entropy increases for almost every object,

5| Experimental Evaluation 43

Figure 5.3: Memory Layout MacOS M1 Native

MIN MAX AVG MIN MAX AVG
executable 0.00 11.58 3.86 16B 12.58 14.55 13.68
stack 11.58 11.82 11.66 512B 7.55 9.98 8.95
mmap() 11.59 12.61 12.29 4KB 7.46 9.18 8.42
main malloc() 3.19 12.58 6.85 256KB 3.19 5.35 4.40
thread malloc() 4.55 14.55 8.34 4MB 3.23 5.36 4.56
1st malloc() 3.19 14.05 7.72 128MB 6.65 7.86 7.25
2nd malloc() 3.27 14.55 8.03 shared 11.58 11.58 11.58
mmap() huge NA NA NA other 11.58 13.52 12.62

Table 5.10: Entropy Groups MacOS M1 Native

this is because this correlation is the result of two uncorrelated random variables, thus
increasing the resulting entropy. We call this Negative entropy. However, this is irrelevant
when the starting regions have low to none randomization, as it is easier to brute force
directly the target object. Some objects are consecutive to other executable objects, as
we can see from Table 5.11.

Reboot Changes. After reboot only the entropy of the libraries, previously fixed in
position, is affected, with 12.2 bit of absolute entropy. The other objects are unchanged
as we can see in Table B.2. The Probability Distribution of the newly randomized sections
presented in Figure B.3 appears uniform. In the end, the randomization process performed
during reboot is still unable to protect against a brute-force attack due to its low entropy.

44 5| Experimental Evaluation

path ent diff path ent diff
text ← shared 0.00 -11.58 text ← mmap_single_Th 2.16 -9.42
text ← global_var 0.00 -11.58 text ← mmap_single_M 0.01 -11.58

Table 5.11: Positive Correlation executable path MacOS M1 Native

Architecture arm64
Emulator Rosetta
Emulated Arch x86_64
First Boot Samples 1,000,000
Reboots 5,000
Reboot Samples 500
Total Reboot Samples 2,500,000

Table 5.12: Information MacOS M1 Rosetta Sampling

5.2.2. MacOS M1 Rosetta

Memory Layout. In Figure 5.4 we can see that the memory layout on MacOS using
Rosetta is divided into three section. The lower one locates explicitly mapped pages,
stack of main and threads and the text. The middle one correspond to the higher of
the Native Implementation, accommodating MALLOC_NANO and TLS variables. The higher
one is dedicated to malloc() objects and libraries that this time presents more visual
distribution, so we can expect higher entropy compared to the Native implementation.

Probability Distribution. Clearly visible in Figure B.4, Rosetta does a good job dis-
tributing the allocations, with all malloc() objects having a uniform distribution. The
remaining objects have a uniform distribution among three distinct groups while the li-
braries as we expected are fixed in memory.

Absolute Entropy. As is clearly evident from Table 5.13 the absolute entropy is low.
As we can see in Table B.3, executable objects are poorly randomized: libraries are fixed
and text is randomized with just 13.5 bit. However, it does a better job compared to
Native implementation, mainly in the malloc() objects that now are randomized with
entropy ranging from 12 to 19 bit. Overall the randomization is insufficient.

Correlation Entropy. In Figure B.5 we observe a lot of memory regions with Negative
Correlation, in particular the malloc() objects appear to be completely uncorrelated with
other regions. In terms of the relevant Positive Correlation path, we can see a complete
correlation between text objects and mapped pages. Other Positive Correlation Path that
lead to executable objects are reported in Table 5.14.

5| Experimental Evaluation 45

Figure 5.4: Memory Layout MacOS M1 Rosetta

MIN MAX AVG MIN MAX AVG
executable 0.00 13.58 4.53 16B 12.61 14.57 13.49
stack 14.67 15.12 14.82 512B 16.55 19.10 17.76
mmap() 13.58 13.59 13.59 4KB 16.51 18.50 17.45
main malloc() 12.00 16.55 14.30 256KB 12.00 14.26 13.14
thread malloc() 13.19 19.10 15.66 4MB 12.06 14.28 13.31
1st malloc() 12.00 18.17 15.00 128MB 16.04 16.40 16.17
2nd malloc() 12.13 19.10 15.44 shared 13.58 13.58 13.58
mmap() huge NA NA NA other 13.58 15.97 14.73

Table 5.13: Entropy Groups MacOS M1 Rosetta

Reboot Changes. The results presented in Table B.4 are comparable to the Native one
discussed in Section 5.2.1, with 12.2 bit of absolute entropy in libraries and no change
in other objects. Even the Probability Distributions of the newly randomized sections
presented in Figure B.3 are comparable. Again, the randomization process performed
during reboot is insufficient in entropy to provide any sort of real protection.

5.3. Windows

Sampling of Windows system was done inside an emulated environment running on a ma-
chine configurated as in Table 5.15 . Moreover, for Windows 11 sampling the configuration
adopted is provided in Table 5.16.

46 5| Experimental Evaluation

path ent diff path ent diff
text ← shared 0.00 -13.58 text ← mmap_single_Th 1.19 -12.39
text ← global_var 0.00 -13.58 text ← mmap_single_M 0.00 -13.58

Table 5.14: Positive Correlation executable path MacOS M1 Rosetta

Hypervisor QEMU 7.1.0
CPU i7-4790K
RAM 32GB RAM

Table 5.15: General Configuration Windows

5.3.1. Windows 11

Memory Layout Figure 5.5:
Looking at the memory layout we clearly identify 3 regions. The first two are located
at low addresses, one hosts all malloc() objects and VirtualAlloc() objects, and the
other hosts all stacks, both thread and main ones. At the other end of the memory, we
can see global variables, libraries, and text area, which are the objects whose position is
fixed inside the memory.

Probability Distribution. In Figure C.1 we can observe 3 different shapes for the
distribution. We have stacks that are randomized uniformly, text, libraries and global
variables that are fixed, and malloc() objects that are randomized following a triangular
distribution. This last aspect usually means that the position is obtained by combining
two independent sources of entropy, obtaining what we call an Irwin–Hall distribution.
This choice, even if provides a larger entropy compared to the single random variable,
potentially exposes the system to attacks regarding the most common value, reducing the
absolute effort needed to de-randomize the section.

Absolute Entropy. From Table 5.17 we see that overall randomization entropy almost
every time over 23 bit, with some objects reaching as high as 27 bit. As expected huge
pages stop at less entropy compared to other sections, due to larger page offset. From
Table C.1 were we provided the whole results, we confirm that global variables, libraries,
and text are fixed in position and pose major risks.

Correlation Entropy. The correlation matrix shown in Figure C.2 tells what already
partially emerged from the memory layout: High correlation inside the identified areas
and a low correlation between areas. However, no relevant Positive Correlation Path
emerged as the position of executable objects are already fixed.

Reboot Changes. The rebooting process randomizes also the fixed section. after per-

5| Experimental Evaluation 47

OS Windows 11
Architecture x86_64
Version 10.0.22621
First Boot Samples 3,800,000
Reboots 10,000
Reboot Samples 400
Total Reboot Samples 4,000,000

Table 5.16: Information Windows 11 Sampling

Figure 5.5: Memory Layout Windows 11

forming 10,000 reboots we can plot the corresponding Probability Distribution, in Fig-
ure C.3, and also calculate the difference in Absolute Entropy compared to the single
boot scenario. The distribution appears to be uniform and the reboot seems to leave the
entropy of the usually randomized sections untouched. Clearly from Table C.3, significant
changes apply to global var, libraries, and text sections that now experience 13.2 bit of
entropy. Still insufficient to protect against a brute-force attack.

5.4. Android

Android sampling was performed using Android Emulator with the configuration provided
in Table 5.18. For the specific OS version considered, Android 13.0, the relevant configu-
ration such as the number of reboots and number of samples are available in Table 5.19.

48 5| Experimental Evaluation

MIN MAX AVG MIN MAX AVG
executable 0.00 0.00 0.00 16B 27.41 27.41 27.41
stack 27.41 27.41 27.41 512B 25.91 27.41 27.16
mmap() 25.08 25.24 25.16 4KB 25.91 27.41 27.16
main malloc() 25.36 27.41 26.26 256KB 25.36 27.41 26.61
thread malloc() 22.39 27.41 26.01 4MB 23.84 27.41 24.80
1st malloc() 23.06 27.41 26.13 128MB 22.39 25.53 23.33
2nd malloc() 22.39 27.41 26.03 shared 25.34 25.35 25.35
mmap() huge 18.63 19.65 19.10 other 0.00 27.41 21.92

Table 5.17: Entropy Groups Windows 11

OS Android 13.0
Architecture arm64
Hypervisor Android Emulator 17.0.6
Virtual Device Google Pixel 6
Hardware ARM M1

Table 5.18: General Configuration Android

5.4.1. Android 13

Memory Layout. As we expected after our research to identify the best allocation sizes,
the allocated objects represented in Figure 5.6 are quite sparse inside the memory, with a
trend towards lower addresses. On the right side, we can see the stack and global variable.

Probability Distribution. The graphs in Figure D.1 presents many spikes, suggesting
little to no randomization in most of the sections, with only allocations of large sizes
(128MB) done from the main having some sort of distribution. Also, stack variable,
environment variables, and libraries are completely fixed.

Absolute Entropy. Our suspect of no-randomization in most of the sections is confirmed
by the Absolute Entropy results, summarized in Table 5.20; clearly, only allocation greater
than 4MB has been randomized while others are basically fixed in position. From the
complete results available in Table D.1, we can see that global variables and text are
randomized with 13 bit of entropy while libraries and main stack is fixed in position.
Overall, the randomization is scarce as we expected.

Correlation Entropy. Being every executable object almost fixed, Correlation Entropy
isn’t as useful as in other OS, however we can identify a Positive Correlation Path from
global variables to text area, visible in Table 5.21, that are completely correlated in
position. The complete results are available in Figure D.2.

5| Experimental Evaluation 49

First Boot Samples 10,000
Reboots Sample 140
Reboots 3,150
Total Reboot Samples 441,00

Table 5.19: Information Android 13.0 Sampling

Figure 5.6: Memory Layout Android 13

Reboot Changes. In Table D.2 can see the resulting Absolute Entropy after reboot.
Rebooting increases significantly the entropy of every object, at least to a detectable level.
The objects that before were randomized to a detectable level are now at a significant
level of entropy (>19.5 bit) while the other allocations range from 10 bit to 16 bit. Badly,
libraries are randomized only with 9.8 bit of entropy, too few to contrast even the slowest
attack.

50 5| Experimental Evaluation

MIN MAX AVG MIN MAX AVG
executable 0.00 13.10 4.37 16B 4.19 5.74 5.10
stack 0.00 7.80 5.20 512B 2.19 3.12 2.77
mmap() 0.80 1.79 1.44 4KB 0.43 1.86 1.35
main malloc() 0.36 14.01 4.85 256KB 0.04 1.40 0.94
thread malloc() 1.23 15.94 6.77 4MB 7.80 15.94 11.80
1st malloc() 0.36 15.34 5.94 128MB 14.01 15.34 14.86
2nd malloc() 0.04 15.94 6.34 shared NA NA NA
mmap() huge NA NA NA other 0.00 13.10 4.86

Table 5.20: Entropy Groups Android 13.0

path ent diff path ent diff
text ← global_var 0.00 -13.10 text ← malloc_128MB_M 9.55 -3.55

Table 5.21: Positive Correlation executable path Android 13.0

51

6| Weakness and Attack POC

In this chapter, we will discuss some of the possibilities in terms of attack scenarios that
are provided by the found vulnerability. after that, we will try to exploit them in a proof
of concept to verify that our estimations were indeed true.

6.1. Weakness and Attacker Profile

Our analysis identified many lacking points in current ASLR implementations and we
can categorize them and rank them based on which object they affect. Even if every
unrandomized one is a vulnerability, some are more important than others. For instance,
to build a successful ROP we have to correctly guess the position of gadgets inside memory,
so randomizing this type of object is the priority. On the other hand, knowing the position
of a malloc object might be useful to read its content or write information, but by themself
cannot directly be exploited to execute code. However, they might suggest the position
of executable objects due to Positive Correlation.

We need to define two attacker profile to better evaluate the severity of the problems
found:

• Local attacker without information disclosure: The attacker has access to
both the system and the vulnerable program.

• Local attacker with information disclosure: The attacker has access to the sys-
tem and the vulnerable program and the program leaks the address of an arbitrary
non-executable object.

• Remote attacker without information disclosure: The attacker has access
only to the program and does not know the memory layout of other programs on
the machine.

• Remote attacker with information disclosure: The attacker has access only
to the program and the program leaks the address of an arbitrary non-executable
object.

52 6| Weakness and Attack POC

In all these situations we assume the attacker able to redirect the flow of the execution,
so the stack smashing protection is defeated or disabled in the first place. According to
these considerations, we can rank the weaknesses found in the analysis process from the
most severe to the least severe:

1. Fixed position of executable objects

2. Low entropy of executable objects in different reboot

3. Low entropy of executable objects in a single reboot

4. Presence of Positive Correlation paths to executable objects

5. General low entropy

6.2. Attack Scenarios

Based on the highlighted weaknesses and the different attacker profiles we can define 3
main distinct attack scenarios.

6.2.1. Fixed Position

The most severe problem is the fixed position of executable objects: .text and libraries.
Those objects can be used to build ROP and potentially execute malicious code; in this
situation, a Local Attacker could launch another program, gather the information about
address libraries of the current system configuration, and then use this address to build a
ROP in just one try. In case another program cannot be launched and the current system
configuration is unknown Local Attackers and Remote Attackers without leaks are in the
same situation: brute-forcing the address position; at this point, the effort we need to put
in is half the reboot entropy, in fact, if the reboot entropy of an executable object is 13.2
bit as in Windows 11, on average we will need 213.2

2
= 4, 700 tries to correctly guess the

address. In the presence of a leak, we could exploit the Positive Correlation paths; for
instance, in MacOS M1 in the same boot, a leaked address of a malloc() object of sizes
between 512B and 128MB reduces the entropy of libraries from 12 bit to 7 bit.

6.2.2. Random Position

If the position of executable objects is randomized at every program launch, like in Linux,
we cannot use information gathered from other programs in a local attack, and the only
possible approach is to directly brute force the object. In Linux the entropy of executable

6| Weakness and Attack POC 53

objects is over 27 bit so an attack of those types is hard to achieve in a reasonable time.
However, since the Linux version 5.18 the entropy of libraries of sizes greater than 2MB
was drastically reduced. This is a major concern since now is under the threshold of 20
bit. If we have a leak of an address both a local and remote attacker could exploit one
of the many Positive Correlation path present in Linux. A leak of a sbrk() object will
reduce the entropy of text from 27 bit to just 13 bit and a leak in other malloc() will
reduce the entropy of libraries from 27 bit to 9 bit in the best case, to 1 in the worst.

6.2.3. Distributed Attack

Another scenario is the distributed attack. Imagine a vulnerability in a wide diffused tool
(like the one found in log4j). If we can target multiple devices the reboot entropy will
tell us how many hits we will collect after one try. In fact, if an object has an entropy
S the probability of a device being in a specific state A, the one we write in the exploit,
is P(A) = 1/S, so if N devices are infected we should expect N*P(A)=N/S device to be
in the chosen configuration. For instance, a vulnerability of this type affecting 10,000
MacOS systems that have a reboot entropy of libraries of 12.3 bit, means that on one try
we should hit around 2 systems.

6.3. Positive Correlation Attack POC

To validate our findings about the Positive Correlation path in Linux Kernels we set up
a dummy program with an explicit buffer overflow vulnerability and a leak of a malloc()
object to reduce the entropy of text to around 13 bit. The vulnerable program is presented
in Algorithm 6.1 and was compiled using gcc -fno-stack-protector -o vuln vuln.c

to disable the stack protection and enable the buffer overflow. The attack was performed
using a Python script using the library pwntools that launched the vulnerable program,
gathered the leak, added a fixed offset found doing dynamic analysis on the program,
launched the exploit targeting the flag() function inside the text object. After that, the
script observed the output. If it was "FLAG", then the exploit was successful, otherwise,
we missed the target. We repeated the simulation on both Linux 5.17 and Linux 6.4.9
for a total of 2Mln tries. In the end, we had 261 successes, averaging one success every
7650 tries. This translates into an attack complexity of 212.9bit compared to an expected
12.99 bit of entropy. This is a difference of 0.753% in entropy from the real value, so our
estimation was revealed to be solid.

54 6| Weakness and Attack POC

Algorithm 6.1 Vulnerable Program
1: function flag
2:
3: OUTPUT(”FLAG”)
4:
5: end function
6:
7: function vuln_function
8:
9: NAME[16] ▷ vulnerable buffer

10: HEAP_TARGET ← malloc(4KB)
11:
12: Output(”the target is ” + HEAP_TARGET)
13: gets(NAME) ▷ buffer overflow
14:
15: end function
16:

55

7| Conclusions and future

developments

In this thesis, the effectiveness of Address Space Layout Randomization was evaluated
across major desktop and mobile platforms through statistical analysis of memory object
position. The choice of a low-bias estimator like NSB permitted us to reduce the number
of collected samples, allowing the analysis of even slow processes like device reboot.
We highlight major problems in the performance of ASLR systems. In some cases long-
standing, like the lack of entropy of libraries and executable objects in Windows, MacOS,
and Android. Other problems were newly introduced like the reduction found in recent
Linux distributions. Overall, Linux distributions provide good randomization, while Win-
dows, MacOS, and Android fail to adequately randomize key memory areas like executable
code and libraries. Positive correlations between objects on Linux reduce entropy to dan-
gerously low levels that our proof-of-concept exploits validated. The findings highlight
opportunities for OS vendors to strengthen implementations and better protect users from
malicious attacks. Addressing reduced entropy from correlations, optimizing allocation
patterns, and increasing object granularity could all fortify defenses. Even if some so-
lutions like ASLR-NG [14] were proposed in the years, claiming to improve drastically
the effectiveness of ASLR on Linux systems, their current implementation is unavailable.
Moreover, this research suggests that the evolution of operating systems often is not
security-focused and the introduction of Linux Folios confirms this claim.
We expect major changes with the broad adoption of a 5-level paging system, providing
by construction more bits to the randomization process [25]. Another aspect underlined
in this work is the role of allocation patterns and the difficulty of correctly modeling such
behavior. Real-world software is a complex ecosystem of interacting objects and their
performance may vary significantly from the expectation, often lower.
According to these findings, future work includes the realization of a software profiler
that analyzes the memory mappings of real software and their allocated object. Also, the
extension of this research to other Linux security-hardened distributions could provide
comparative insight into the choice of enterprise operating systems.

57

Bibliography

[1] J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi. Estimating renyi entropy of
discrete distributions. IEEE Transactions on Information Theory, 63(1):38–56, 2017.
doi: 10.1109/TIT.2016.2620435.

[2] D. H. Aristizabal, D. M. Rodriguez, and R. Y. Guevara. Measuring aslr implementa-
tions on modern operating systems. In 2013 47th International Carnahan Conference
on Security Technology (ICCST), pages 1–6, 2013. doi: 10.1109/CCST.2013.6922073.

[3] Y. Ding, Z. Peng, Y. Zhou, and C. Zhang. Android low entropy demystified. In 2014
IEEE International Conference on Communications (ICC), pages 659–664, 2014. doi:
10.1109/ICC.2014.6883394.

[4] R. V. Díaz, M. Rivera-Dourado, R. Pérez-Jove, P. V. Avendaño, and J. M. Vázquez-
Naya. Aslr analyzer, 2019. URL https://github.com/raquelvqz/aslr/.

[5] R. V. Díaz, M. Rivera-Dourado, R. Pérez-Jove, P. V. Avendaño, and J. M. Vázquez-
Naya. Address space layout randomization comparative analysis on windows 10
and ubuntu 18.04 lts †. Engineering Proceedings, 7, 2021. ISSN 26734591. doi:
10.3390/engproc2021007026.

[6] W. Herlands, T. Hobson, and P. J. Donovan. Effective entropy: Security-Centric
metric for memory randomization techniques. In 7th Workshop on Cyber Security
Experimentation and Test (CSET 14), San Diego, CA, aug 2014. USENIX Asso-
ciation. URL https://www.usenix.org/conference/cset14/workshop-program/

presentation/herlands.

[7] D. G. Hernández and I. Samengo. Estimating the mutual information between two
discrete, asymmetric variables with limited samples. Entropy, 21, 6 2019. ISSN
10994300. doi: 10.3390/e21060623.

[8] D. Kaplan, S. Kedmi, R. Hay, and A. Dayan. Attacking the linux prng on android:
Weaknesses in seeding of entropic pools and low boot-time entropy. In Proceedings
of the 8th USENIX Conference on Offensive Technologies, WOOT’14, page 14, USA,
2014. USENIX Association.

https://github.com/raquelvqz/aslr/
https://www.usenix.org/conference/cset14/workshop-program/presentation/herlands
https://www.usenix.org/conference/cset14/workshop-program/presentation/herlands

58 | Bibliography

[9] M. Kerrisk. pthread_create(3) - Linux Manual, Jan 2023. URL https://man7.org/

linux/man-pages/man3/pthread_create.3.html.

[10] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee. From zygote to morula: Fortifying
weakened aslr on android. pages 424–439. Institute of Electrical and Electronics
Engineers Inc., 11 2014. ISBN 9781479946860. doi: 10.1109/SP.2014.34.

[11] S. Liebergeld and M. Lange. Android Security, Pitfalls and Lessons Learned,
volume 264, pages 409–417. 09 2013. ISBN 978-3-319-01603-0. doi: 10.1007/
978-3-319-01604-7_40.

[12] H. Marco Gisbert and I. Ripoli. On the effectiveness of full-aslr on 64-bit linux. Nov.
2014. URL https://deepsec.net/archive/2014.deepsec.net/index.html. In-
depth Security Conference 2014 (DeepSec) ; Conference date: 18-11-2014 Through
21-11-2014.

[13] H. Marco Gisbert and I. Ripoll. Exploiting linux and pax aslr’s weaknesses on 32-
bit and 64-bit systems. Mar. 2016. URL https://www.blackhat.com/asia-16/

briefings.html. Black Hat Asia 2016 ; Conference date: 29-03-2016 Through 01-
04-2016.

[14] H. Marco-Gisbert and I. Ripoll Ripoll. Address space layout randomization next
generation. Applied Sciences, 9(14), 2019. ISSN 2076-3417. doi: 10.3390/app9142928.
URL https://www.mdpi.com/2076-3417/9/14/2928.

[15] S. Marsili and C. Cattuto. Nsb entropy estimator, python implementation, 2021.
URL https://github.com/simomarsili/ndd/tree/master.

[16] I. Nemenman. NSB Entropy Estimator, 2012. URL https://nemenmanlab.org/

~ilya/index.php/Entropy_Estimation.

[17] I. Nemenman, F. Shafee, and W. Bialek. Entropy and inference, revisited.
In Advances in Neural Information Processing Systems, volume 14. MIT Press,
2001. URL https://proceedings.neurips.cc/paper_files/paper/2001/file/

d46e1fcf4c07ce4a69ee07e4134bcef1-Paper.pdf.

[18] Security Scorecard. Cve security vulnerability database. security vul-
nerabilities, exploits, Aug 2023. URL https://www.cvedetails.com/

vulnerabilities-by-types.php.

[19] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

https://man7.org/linux/man-pages/man3/pthread_create.3.html
https://man7.org/linux/man-pages/man3/pthread_create.3.html
https://deepsec.net/archive/2014.deepsec.net/index.html
https://www.blackhat.com/asia-16/briefings.html
https://www.blackhat.com/asia-16/briefings.html
https://www.mdpi.com/2076-3417/9/14/2928
https://github.com/simomarsili/ndd/tree/master
https://nemenmanlab.org/~ilya/index.php/Entropy_Estimation
https://nemenmanlab.org/~ilya/index.php/Entropy_Estimation
https://proceedings.neurips.cc/paper_files/paper/2001/file/d46e1fcf4c07ce4a69ee07e4134bcef1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/d46e1fcf4c07ce4a69ee07e4134bcef1-Paper.pdf
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php

7| BIBLIOGRAPHY 59

[20] Statcounter Global Stats. Desktop Operating System Market Share World-
wide, Aug 2023. URL https://gs.statcounter.com/os-market-share/desktop/

worldwide.

[21] Statcounter Global Stats. Mobile Operating System Market Share Worldwide, Aug
2023. URL https://gs.statcounter.com/os-market-share/mobile/worldwide.

[22] The kernel development community. Libc: Malloc tunable parameters, Jan
2023. URL https://www.gnu.org/software/libc/manual/2.37/html_mono/

libc.html#Malloc-Tunable-Parameters.

[23] The kernel development community. Memory management apis documentation, Jan
2023. URL https://www.kernel.org/doc/html/v6.0/core-api/mm-api.html.

[24] L. Torvalds. Linux 5.15 x86 repository, Jan 2021. URL https://github.com/

torvalds/linux/tree/v5.15/arch/x86.

[25] L. Torvalds. Memory management in linux 5.15, Aug 2021. URL https://github.

com/torvalds/linux/blob/v5.15/Documentation/x86/x86_64/mm.rst.

[26] W3Techs. Linux market share, Jan 2023. URL https://truelist.co/blog/

linux-statistics/.

[27] W3Techs. Usage statistics of operating systems for websites, Sep 2023. URL https:

//w3techs.com/technologies/overview/operating_system.

[28] O. Whitehouse. An analysis of address space layout randomization on windows vista.
2007. URL https://api.semanticscholar.org/CorpusID:62370377.

[29] A. abrocki. Scraps of notes on remote stack overflow exploitation, Nov 2010. URL
http://phrack.org/issues/67/13.html#article.

https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.gnu.org/software/libc/manual/2.37/html_mono/libc.html#Malloc-Tunable-Parameters
https://www.gnu.org/software/libc/manual/2.37/html_mono/libc.html#Malloc-Tunable-Parameters
https://www.kernel.org/doc/html/v6.0/core-api/mm-api.html
https://github.com/torvalds/linux/tree/v5.15/arch/x86
https://github.com/torvalds/linux/tree/v5.15/arch/x86
https://github.com/torvalds/linux/blob/v5.15/Documentation/x86/x86_64/mm.rst
https://github.com/torvalds/linux/blob/v5.15/Documentation/x86/x86_64/mm.rst
https://truelist.co/blog/linux-statistics/
https://truelist.co/blog/linux-statistics/
https://w3techs.com/technologies/overview/operating_system
https://w3techs.com/technologies/overview/operating_system
https://api.semanticscholar.org/CorpusID:62370377
http://phrack.org/issues/67/13.html#article

61

A| Linux Results

Object Ent Object Ent
malloc_16B_M__1 27.409 mmap_single_ThA__2 27.409
malloc_512B_M__1 27.409 malloc_16B_ThB__1 14.744
malloc_4KB_M__1 27.409 malloc_512B_ThB__1 14.744
malloc_256KB_M__1 27.408 malloc_4KB_ThB__1 14.744
malloc_4MB_M__1 27.408 malloc_256KB_ThB__1 24.773
malloc_128MB_M__1 27.408 malloc_4MB_ThB__1 19.912
mmap_huge_M__1 19.024 malloc_128MB_ThB__1 15.660
mmap_single_M__1 27.408 mmap_huge_ThB__1 18.869
malloc_16B_M__2 27.409 mmap_single_ThB__1 27.408
malloc_512B_M__2 27.409 malloc_16B_ThB__2 14.744
malloc_4KB_M__2 27.409 malloc_512B_ThB__2 14.744
malloc_256KB_M__2 25.911 malloc_4KB_ThB__2 14.744
malloc_4MB_M__2 19.588 malloc_256KB_ThB__2 24.154
malloc_128MB_M__2 19.588 malloc_4MB_ThB__2 18.977
mmap_huge_M__2 19.024 malloc_128MB_ThB__2 16.227
mmap_single_M__2 27.408 mmap_huge_ThB__2 18.787
malloc_16B_ThA__1 14.926 mmap_single_ThB__2 27.408
malloc_512B_ThA__1 14.926 stack_var_ThA 19.024
malloc_4KB_ThA__1 14.926 tls_var_ThA 19.024
malloc_256KB_ThA__1 24.247 stack_var_ThB 19.026
malloc_4MB_ThA__1 19.752 tls_var_ThB 19.026
malloc_128MB_ThA__1 16.236 argv 27.395
mmap_huge_ThA__1 18.814 env 22.472
mmap_single_ThA__1 27.409 stack_var_M 27.395
malloc_16B_ThA__2 14.926 global_var 27.409
malloc_512B_ThA__2 14.926 shared_M__1 27.408
malloc_4KB_ThA__2 14.926 shared_M__2 27.408
malloc_256KB_ThA__2 23.722 tls_var_M 27.408
malloc_4MB_ThA__2 18.929 lib__1 27.408
malloc_128MB_ThA__2 16.840 lib__2 27.408
mmap_huge_ThA__2 18.711 text 27.409

Table A.1: Absolute Entropy Linux 5.17.15

62 A| Linux Results

Figure A.1: Probability Distribution Linux 5.17.19

A| Linux Results 63

Figure A.2: Correlation Entropy Linux 5.17.19

64 A| Linux Results

Object Ent Object Ent
malloc_16B_M__1 27.409 mmap_single_ThA__2 27.409
malloc_512B_M__1 27.409 malloc_16B_ThB__1 14.931
malloc_4KB_M__1 27.409 malloc_512B_ThB__1 14.931
malloc_256KB_M__1 25.832 malloc_4KB_ThB__1 14.931
malloc_4MB_M__1 19.611 malloc_256KB_ThB__1 24.006
malloc_128MB_M__1 19.611 malloc_4MB_ThB__1 20.197
mmap_huge_M__1 19.023 malloc_128MB_ThB__1 16.134
mmap_single_M__1 27.409 mmap_huge_ThB__1 18.883
malloc_16B_M__2 27.409 mmap_single_ThB__1 27.409
malloc_512B_M__2 27.409 malloc_16B_ThB__2 14.931
malloc_4KB_M__2 27.409 malloc_512B_ThB__2 14.931
malloc_256KB_M__2 24.902 malloc_4KB_ThB__2 14.931
malloc_4MB_M__2 19.023 malloc_256KB_ThB__2 23.522
malloc_128MB_M__2 19.023 malloc_4MB_ThB__2 19.125
mmap_huge_M__2 19.023 malloc_128MB_ThB__2 16.636
mmap_single_M__2 27.409 mmap_huge_ThB__2 18.808
malloc_16B_ThA__1 14.978 mmap_single_ThB__2 27.409
malloc_512B_ThA__1 14.978 stack_var_ThA 19.023
malloc_4KB_ThA__1 14.978 tls_var_ThA 19.023
malloc_256KB_ThA__1 23.998 stack_var_ThB 19.029
malloc_4MB_ThA__1 20.007 tls_var_ThB 19.029
malloc_128MB_ThA__1 16.071 argv 27.395
mmap_huge_ThA__1 18.875 env 22.472
mmap_single_ThA__1 27.409 stack_var_M 27.395
malloc_16B_ThA__2 14.978 global_var 27.409
malloc_512B_ThA__2 14.978 shared_M__1 27.409
malloc_4KB_ThA__2 14.978 shared_M__2 27.409
malloc_256KB_ThA__2 23.501 tls_var_M 27.409
malloc_4MB_ThA__2 19.117 lib__1 19.023
malloc_128MB_ThA__2 16.786 lib__2 27.409
mmap_huge_ThA__2 18.804 text 27.409

Table A.2: Absolute Entropy Linux 6.4.9

A| Linux Results 65

Figure A.3: Probability Distribution Linux 6.4.9

66 A| Linux Results

Figure A.4: Correlation Entropy Linux 6.4.9

A| Linux Results 67

Object Ent Object Ent
malloc_16B_M__1 0.000 mmap_single_ThA__2 0.000
malloc_512B_M__1 0.000 malloc_16B_ThB__1 0.187
malloc_4KB_M__1 0.000 malloc_512B_ThB__1 0.187
malloc_256KB_M__1 -1.576 malloc_4KB_ThB__1 0.187
malloc_4MB_M__1 -7.797 malloc_256KB_ThB__1 -0.767
malloc_128MB_M__1 -7.797 malloc_4MB_ThB__1 0.286
mmap_huge_M__1 -0.000 malloc_128MB_ThB__1 0.474
mmap_single_M__1 0.001 mmap_huge_ThB__1 0.013
malloc_16B_M__2 0.000 mmap_single_ThB__1 0.001
malloc_512B_M__2 0.000 malloc_16B_ThB__2 0.187
malloc_4KB_M__2 0.000 malloc_512B_ThB__2 0.187
malloc_256KB_M__2 -1.010 malloc_4KB_ThB__2 0.187
malloc_4MB_M__2 -0.565 malloc_256KB_ThB__2 -0.632
malloc_128MB_M__2 -0.565 malloc_4MB_ThB__2 0.147
mmap_huge_M__2 -0.000 malloc_128MB_ThB__2 0.409
mmap_single_M__2 0.001 mmap_huge_ThB__2 0.021
malloc_16B_ThA__1 0.052 mmap_single_ThB__2 0.001
malloc_512B_ThA__1 0.052 stack_var_ThA -0.000
malloc_4KB_ThA__1 0.052 tls_var_ThA -0.000
malloc_256KB_ThA__1 -0.249 stack_var_ThB 0.003
malloc_4MB_ThA__1 0.254 tls_var_ThB 0.003
malloc_128MB_ThA__1 -0.165 argv 0.000
mmap_huge_ThA__1 0.061 env -0.000
mmap_single_ThA__1 -0.000 stack_var_M 0.000
malloc_16B_ThA__2 0.052 global_var -0.000
malloc_512B_ThA__2 0.052 shared_M__1 0.001
malloc_4KB_ThA__2 0.052 shared_M__2 0.001
malloc_256KB_ThA__2 -0.221 tls_var_M 0.001
malloc_4MB_ThA__2 0.188 lib__1 -8.385
malloc_128MB_ThA__2 -0.054 lib__2 0.001
mmap_huge_ThA__2 0.093 text -0.000

Table A.3: Absolute Entropy Change Linux 5.17.15 to Linux 6.4.9

69

B| MacOS Results

Object Ent Object Ent
malloc_16B_M__1 12.583 malloc_16B_ThB__1 14.053
malloc_512B_M__1 7.551 malloc_512B_ThB__1 9.394
malloc_4KB_M__1 7.465 malloc_4KB_ThB__1 8.710
malloc_256KB_M__1 3.189 malloc_256KB_ThB__1 4.755
malloc_4MB_M__1 3.231 malloc_4MB_ThB__1 5.159
malloc_128MB_M__1 7.106 malloc_128MB_ThB__1 7.485
mmap_single_M__1 11.587 mmap_single_ThB__1 12.455
malloc_16B_M__2 12.639 malloc_16B_ThB__2 14.554
malloc_512B_M__2 7.619 malloc_512B_ThB__2 9.939
malloc_4KB_M__2 7.533 malloc_4KB_ThB__2 9.180
malloc_256KB_M__2 3.274 malloc_256KB_ThB__2 5.349
malloc_4MB_M__2 3.278 malloc_4MB_ThB__2 5.360
malloc_128MB_M__2 7.857 malloc_128MB_ThB__2 7.162
mmap_single_M__2 12.046 mmap_single_ThB__2 12.582
malloc_16B_ThA__1 13.728 stack_var_ThA 11.583
malloc_512B_ThA__1 9.237 tls_var_ThA 13.160
malloc_4KB_ThA__1 8.484 stack_var_ThB 11.583
malloc_256KB_ThA__1 4.550 tls_var_ThB 13.521
malloc_4MB_ThA__1 5.038 argv 12.028
malloc_128MB_ThA__1 7.240 env 12.903
mmap_single_ThA__1 12.478 stack_var_M 11.820
malloc_16B_ThA__2 14.520 global_var 11.583
malloc_512B_ThA__2 9.984 shared_M__1 11.583
malloc_4KB_ThA__2 9.137 shared_M__2 11.583
malloc_256KB_ThA__2 5.282 tls_var_M 12.549
malloc_4MB_ThA__2 5.295 lib__1 0.000
malloc_128MB_ThA__2 6.650 lib__2 0.000
mmap_single_ThA__2 12.611 text 11.583

Table B.1: Absolute Entropy MacOS M1 Native

70 B| MacOS Results

Figure B.1: Probability Distribution MacOS M1 Native

B| MacOS Results 71

Figure B.2: Correlation Entropy MacOS M1 Native

72 B| MacOS Results

Object Ent Object Ent
malloc_16B_M__1 0.231 malloc_16B_ThB__1 0.101
malloc_512B_M__1 0.207 malloc_512B_ThB__1 0.319
malloc_4KB_M__1 0.144 malloc_4KB_ThB__1 0.138
malloc_256KB_M__1 0.004 malloc_256KB_ThB__1 0.129
malloc_4MB_M__1 0.022 malloc_4MB_ThB__1 0.093
malloc_128MB_M__1 0.017 malloc_128MB_ThB__1 -0.242
mmap_single_M__1 0.003 mmap_single_ThB__1 0.081
malloc_16B_M__2 0.266 malloc_16B_ThB__2 0.127
malloc_512B_M__2 0.250 malloc_512B_ThB__2 0.301
malloc_4KB_M__2 0.187 malloc_4KB_ThB__2 0.121
malloc_256KB_M__2 0.050 malloc_256KB_ThB__2 0.052
malloc_4MB_M__2 0.050 malloc_4MB_ThB__2 0.047
malloc_128MB_M__2 0.018 malloc_128MB_ThB__2 -0.513
mmap_single_M__2 -0.000 mmap_single_ThB__2 0.055
malloc_16B_ThA__1 0.071 stack_var_ThA 0.000
malloc_512B_ThA__1 0.017 tls_var_ThA 0.359
malloc_4KB_ThA__1 0.249 stack_var_ThB 0.000
malloc_256KB_ThA__1 0.053 tls_var_ThB 0.015
malloc_4MB_ThA__1 -0.123 argv -0.376
malloc_128MB_ThA__1 0.228 env -0.001
mmap_single_ThA__1 -0.081 stack_var_M -0.208
malloc_16B_ThA__2 -0.123 global_var 0.000
malloc_512B_ThA__2 -0.169 shared_M__1 0.000
malloc_4KB_ThA__2 0.029 shared_M__2 0.000
malloc_256KB_ThA__2 -0.219 tls_var_M 0.217
malloc_4MB_ThA__2 -0.226 lib__1 12.281
malloc_128MB_ThA__2 0.311 lib__2 12.281
mmap_single_ThA__2 -0.049 text 0.000

Table B.2: Absolute Entropy Change MacOS M1 reboot

B| MacOS Results 73

Figure B.3: Probability Distribution MacOS reboot new sections

Object Ent Object Ent
malloc_16B_M__1 12.609 malloc_16B_ThB__1 13.516
malloc_512B_M__1 16.548 malloc_512B_ThB__1 18.169
malloc_4KB_M__1 16.506 malloc_4KB_ThB__1 17.632
malloc_256KB_M__1 12.000 malloc_256KB_ThB__1 13.398
malloc_4MB_M__1 12.059 malloc_4MB_ThB__1 13.942
malloc_128MB_M__1 16.070 malloc_128MB_ThB__1 16.095
mmap_single_M__1 13.584 mmap_single_ThB__1 13.586
malloc_16B_M__2 12.693 malloc_16B_ThB__2 14.575
malloc_512B_M__2 16.615 malloc_512B_ThB__2 19.102
malloc_4KB_M__2 16.582 malloc_4KB_ThB__2 18.501
malloc_256KB_M__2 12.129 malloc_256KB_ThB__2 14.257
malloc_4MB_M__2 12.133 malloc_4MB_ThB__2 14.278
malloc_128MB_M__2 16.041 malloc_128MB_ThB__2 16.404
mmap_single_M__2 13.584 mmap_single_ThB__2 13.585
malloc_16B_ThA__1 13.374 stack_var_ThA 14.674
malloc_512B_ThA__1 17.710 tls_var_ThA 14.336
malloc_4KB_ThA__1 17.414 stack_var_ThB 14.674
malloc_256KB_ThA__1 13.193 tls_var_ThB 14.722
malloc_4MB_ThA__1 13.600 argv 15.121
malloc_128MB_ThA__1 16.094 env 15.972
mmap_single_ThA__1 13.586 stack_var_M 15.121
malloc_16B_ThA__2 14.190 global_var 13.584
malloc_512B_ThA__2 18.438 shared_M__1 13.584
malloc_4KB_ThA__2 18.037 shared_M__2 13.584
malloc_256KB_ThA__2 13.844 tls_var_M 14.670
malloc_4MB_ThA__2 13.858 lib__1 0.000
malloc_128MB_ThA__2 16.329 lib__2 0.000
mmap_single_ThA__2 13.586 text 13.584

Table B.3: Absolute Entropy MacOS M1 Rosetta

74 B| MacOS Results

Figure B.4: Probability Distribution MacOS M1 Rosetta

B| MacOS Results 75

Figure B.5: Correlation Entropy MacOS M1 Rosetta

76 B| MacOS Results

Object Ent Object Ent
malloc_16B_M__1 -0.087 malloc_16B_ThB__1 0.036
malloc_512B_M__1 -0.054 malloc_512B_ThB__1 -0.068
malloc_4KB_M__1 -0.078 malloc_4KB_ThB__1 0.043
malloc_256KB_M__1 0.000 malloc_256KB_ThB__1 -0.000
malloc_4MB_M__1 -0.013 malloc_4MB_ThB__1 -0.257
malloc_128MB_M__1 -0.012 malloc_128MB_ThB__1 -0.007
mmap_single_M__1 0.000 mmap_single_ThB__1 0.000
malloc_16B_M__2 -0.107 malloc_16B_ThB__2 -0.135
malloc_512B_M__2 -0.060 malloc_512B_ThB__2 -0.236
malloc_4KB_M__2 -0.086 malloc_4KB_ThB__2 -0.335
malloc_256KB_M__2 -0.027 malloc_256KB_ThB__2 -0.439
malloc_4MB_M__2 -0.028 malloc_4MB_ThB__2 -0.456
malloc_128MB_M__2 -0.007 malloc_128MB_ThB__2 -0.012
mmap_single_M__2 0.000 mmap_single_ThB__2 0.000
malloc_16B_ThA__1 0.043 stack_var_ThA 0.000
malloc_512B_ThA__1 -0.027 tls_var_ThA -0.374
malloc_4KB_ThA__1 0.014 stack_var_ThB 0.000
malloc_256KB_ThA__1 -0.019 tls_var_ThB -0.213
malloc_4MB_ThA__1 -0.249 argv -0.387
malloc_128MB_ThA__1 -0.009 env 0.010
mmap_single_ThA__1 0.000 stack_var_M -0.390
malloc_16B_ThA__2 -0.306 global_var 0.000
malloc_512B_ThA__2 -0.345 shared_M__1 0.000
malloc_4KB_ThA__2 -0.322 shared_M__2 0.000
malloc_256KB_ThA__2 -0.400 tls_var_M 0.028
malloc_4MB_ThA__2 -0.411 lib__1 12.225
malloc_128MB_ThA__2 -0.018 lib__2 12.225
mmap_single_ThA__2 0.000 text 0.000

Table B.4: Absolute Entropy Change MacOS M1 Rosetta reboot

B| MacOS Results 77

Figure B.6: Probability Distribution MacOS M1 Rosetta reboot new sections

79

C| Windows Results

Object Ent Object Ent
malloc_16B_M__1 27.408 mmap_single_ThA__2 25.079
malloc_512B_M__1 25.914 malloc_16B_ThB__1 27.408
malloc_4KB_M__1 25.914 malloc_512B_ThB__1 27.408
malloc_256KB_M__1 25.359 malloc_4KB_ThB__1 27.408
malloc_4MB_M__1 27.408 malloc_256KB_ThB__1 26.879
malloc_128MB_M__1 25.528 malloc_4MB_ThB__1 24.656
mmap_huge_M__1 19.654 malloc_128MB_ThB__1 23.153
mmap_single_M__1 25.243 mmap_huge_ThB__1 19.102
malloc_16B_M__2 27.409 mmap_single_ThB__1 25.185
malloc_512B_M__2 27.408 malloc_16B_ThB__2 27.409
malloc_4KB_M__2 27.408 malloc_512B_ThB__2 27.408
malloc_256KB_M__2 27.409 malloc_4KB_ThB__2 27.408
malloc_4MB_M__2 24.122 malloc_256KB_ThB__2 26.749
malloc_128MB_M__2 23.340 malloc_4MB_ThB__2 24.014
mmap_huge_M__2 19.466 malloc_128MB_ThB__2 22.538
mmap_single_M__2 25.209 mmap_huge_ThB__2 18.749
malloc_16B_ThA__1 27.408 mmap_single_ThB__2 25.098
malloc_512B_ThA__1 27.408 stack_var_ThA 27.407
malloc_4KB_ThA__1 27.409 tls_var_ThA 27.409
malloc_256KB_ThA__1 25.881 stack_var_ThB 27.407
malloc_4MB_ThA__1 24.755 tls_var_ThB 27.409
malloc_128MB_ThA__1 23.057 argv 25.416
mmap_huge_ThA__1 19.002 env 25.914
mmap_single_ThA__1 25.158 stack_var_M 27.407
malloc_16B_ThA__2 27.408 global_var 0.000
malloc_512B_ThA__2 27.409 shared_M__1 25.345
malloc_4KB_ThA__2 27.408 shared_M__2 25.345
malloc_256KB_ThA__2 27.407 tls_var_M 25.359
malloc_4MB_ThA__2 23.838 lib__1 0.000
malloc_128MB_ThA__2 22.394 lib__2 0.000
mmap_huge_ThA__2 18.634 text 0.000

Table C.1: Absolute Entropy Windows 11

80 C| Windows Results

Figure C.1: Probability Distribution Windows 11

C| Windows Results 81

Figure C.2: Correlation Entropy Windows 11

82 C| Windows Results

Object Ent Object Ent
malloc_16B_M__1 27.408 mmap_single_ThA__2 25.078
malloc_512B_M__1 25.382 malloc_16B_ThB__1 27.409
malloc_4KB_M__1 25.382 malloc_512B_ThB__1 27.408
malloc_256KB_M__1 25.351 malloc_4KB_ThB__1 27.409
malloc_4MB_M__1 27.409 malloc_256KB_ThB__1 26.918
malloc_128MB_M__1 25.595 malloc_4MB_ThB__1 24.652
mmap_huge_M__1 19.649 malloc_128MB_ThB__1 23.200
mmap_single_M__1 25.240 mmap_huge_ThB__1 19.024
malloc_16B_M__2 27.409 mmap_single_ThB__1 25.183
malloc_512B_M__2 27.372 malloc_16B_ThB__2 27.408
malloc_4KB_M__2 27.408 malloc_512B_ThB__2 27.409
malloc_256KB_M__2 27.408 malloc_4KB_ThB__2 27.409
malloc_4MB_M__2 24.114 malloc_256KB_ThB__2 27.344
malloc_128MB_M__2 23.360 malloc_4MB_ThB__2 23.930
mmap_huge_M__2 19.462 malloc_128MB_ThB__2 22.476
mmap_single_M__2 25.207 mmap_huge_ThB__2 18.607
malloc_16B_ThA__1 27.409 mmap_single_ThB__2 25.084
malloc_512B_ThA__1 27.409 stack_var_ThA 27.407
malloc_4KB_ThA__1 27.408 tls_var_ThA 27.409
malloc_256KB_ThA__1 24.772 stack_var_ThB 27.407
malloc_4MB_ThA__1 24.987 tls_var_ThB 27.408
malloc_128MB_ThA__1 23.138 argv 25.382
mmap_huge_ThA__1 18.997 env 25.382
mmap_single_ThA__1 25.165 stack_var_M 27.408
malloc_16B_ThA__2 27.408 global_var 13.214
malloc_512B_ThA__2 27.408 shared_M__1 25.340
malloc_4KB_ThA__2 27.408 shared_M__2 25.341
malloc_256KB_ThA__2 27.408 tls_var_M 25.382
malloc_4MB_ThA__2 24.036 lib__1 13.250
malloc_128MB_ThA__2 22.452 lib__2 13.273
mmap_huge_ThA__2 18.592 text 13.214

Table C.2: Absolute Entropy Windows 11 reboot

C| Windows Results 83

Figure C.3: Probability Distribution Windows 11 reboot new sections

Object Ent Object Ent
malloc_16B_M__1 0.000 mmap_single_ThA__2 -0.001
malloc_512B_M__1 -0.532 malloc_16B_ThB__1 0.001
malloc_4KB_M__1 -0.532 malloc_512B_ThB__1 -0.000
malloc_256KB_M__1 -0.008 malloc_4KB_ThB__1 0.001
malloc_4MB_M__1 0.001 malloc_256KB_ThB__1 0.039
malloc_128MB_M__1 0.067 malloc_4MB_ThB__1 -0.003
mmap_huge_M__1 -0.005 malloc_128MB_ThB__1 0.047
mmap_single_M__1 -0.003 mmap_huge_ThB__1 -0.079
malloc_16B_M__2 0.000 mmap_single_ThB__1 -0.002
malloc_512B_M__2 -0.036 malloc_16B_ThB__2 -0.001
malloc_4KB_M__2 -0.000 malloc_512B_ThB__2 0.001
malloc_256KB_M__2 -0.001 malloc_4KB_ThB__2 0.001
malloc_4MB_M__2 -0.008 malloc_256KB_ThB__2 0.595
malloc_128MB_M__2 0.020 malloc_4MB_ThB__2 -0.084
mmap_huge_M__2 -0.004 malloc_128MB_ThB__2 -0.063
mmap_single_M__2 -0.002 mmap_huge_ThB__2 -0.142
malloc_16B_ThA__1 0.001 mmap_single_ThB__2 -0.014
malloc_512B_ThA__1 0.001 stack_var_ThA 0.000
malloc_4KB_ThA__1 -0.000 tls_var_ThA 0.000
malloc_256KB_ThA__1 -1.109 stack_var_ThB -0.000
malloc_4MB_ThA__1 0.232 tls_var_ThB -0.001
malloc_128MB_ThA__1 0.082 argv -0.033
mmap_huge_ThA__1 -0.005 env -0.532
mmap_single_ThA__1 0.007 stack_var_M 0.001
malloc_16B_ThA__2 0.000 global_var 13.214
malloc_512B_ThA__2 -0.001 shared_M__1 -0.004
malloc_4KB_ThA__2 0.000 shared_M__2 -0.004
malloc_256KB_ThA__2 0.001 tls_var_M 0.023
malloc_4MB_ThA__2 0.198 lib__1 13.250
malloc_128MB_ThA__2 0.058 lib__2 13.273
mmap_huge_ThA__2 -0.042 text 13.214

Table C.3: Absolute Entropy Change Windows 11 reboot

85

D| Android Results

Object Ent Object Ent
malloc_16B_M__1 4.320 mmap_single_ThA__2 1.786
malloc_512B_M__1 2.187 malloc_16B_ThB__1 5.490
malloc_4KB_M__1 0.433 malloc_512B_ThB__1 2.990
malloc_256KB_M__1 0.356 malloc_4KB_ThB__1 1.863
malloc_4MB_M__1 7.798 malloc_256KB_ThB__1 1.404
malloc_128MB_M__1 14.006 malloc_4MB_ThB__1 13.283
mmap_single_M__1 0.799 malloc_128MB_ThB__1 15.340
malloc_16B_M__2 4.189 mmap_single_ThB__1 1.767
malloc_512B_M__2 2.219 malloc_16B_ThB__2 5.743
malloc_4KB_M__2 1.067 malloc_512B_ThB__2 2.995
malloc_256KB_M__2 0.036 malloc_4KB_ThB__2 1.493
malloc_4MB_M__2 7.798 malloc_256KB_ThB__2 1.267
malloc_128MB_M__2 14.005 malloc_4MB_ThB__2 15.936
mmap_single_M__2 0.798 malloc_128MB_ThB__2 15.241
malloc_16B_ThA__1 5.336 mmap_single_ThB__2 1.735
malloc_512B_ThA__1 3.109 stack_var_ThA 7.799
malloc_4KB_ThA__1 1.845 tls_var_ThA 5.807
malloc_256KB_ThA__1 1.226 stack_var_ThB 7.791
malloc_4MB_ThA__1 10.632 tls_var_ThB 5.784
malloc_128MB_ThA__1 15.277 argv 0.036
mmap_single_ThA__1 1.743 env 0.000
malloc_16B_ThA__2 5.506 stack_var_M 0.000
malloc_512B_ThA__2 3.121 global_var 13.104
malloc_4KB_ThA__2 1.389 tls_var_M 4.452
malloc_256KB_ThA__2 1.379 lib__1 0.000
malloc_4MB_ThA__2 15.378 lib__2 0.000
malloc_128MB_ThA__2 15.277 text 13.104

Table D.1: Absolute Entropy Android 13

86 D| Android Results

Figure D.1: Probability Distribution Android 13

D| Android Results 87

Figure D.2: Correlation Entropy Android 13

88 D| Android Results

Object Ent Object Ent
malloc_16B_M__1 14.459 mmap_single_ThA__2 11.271
malloc_512B_M__1 12.087 malloc_16B_ThB__1 15.666
malloc_4KB_M__1 10.212 malloc_512B_ThB__1 12.956
malloc_256KB_M__1 10.410 malloc_4KB_ThB__1 11.545
malloc_4MB_M__1 16.828 malloc_256KB_ThB__1 11.711
malloc_128MB_M__1 19.742 malloc_4MB_ThB__1 19.176
mmap_single_M__1 10.430 malloc_128MB_ThB__1 19.828
malloc_16B_M__2 14.245 mmap_single_ThB__1 11.241
malloc_512B_M__2 12.087 malloc_16B_ThB__2 15.854
malloc_4KB_M__2 10.689 malloc_512B_ThB__2 12.942
malloc_256KB_M__2 10.489 malloc_4KB_ThB__2 11.210
malloc_4MB_M__2 16.830 malloc_256KB_ThB__2 11.874
malloc_128MB_M__2 19.742 malloc_4MB_ThB__2 19.837
mmap_single_M__2 10.424 malloc_128MB_ThB__2 19.826
malloc_16B_ThA__1 15.448 mmap_single_ThB__2 11.224
malloc_512B_ThA__1 12.973 stack_var_ThA 16.808
malloc_4KB_ThA__1 11.560 tls_var_ThA 15.958
malloc_256KB_ThA__1 11.569 stack_var_ThB 16.789
malloc_4MB_ThA__1 17.945 tls_var_ThB 15.827
malloc_128MB_ThA__1 19.825 argv 10.546
mmap_single_ThA__1 11.254 env 9.830
malloc_16B_ThA__2 15.491 stack_var_M 9.837
malloc_512B_ThA__2 12.962 global_var 18.781
malloc_4KB_ThA__2 11.240 tls_var_M 14.957
malloc_256KB_ThA__2 11.782 lib__1 9.835
malloc_4MB_ThA__2 19.828 lib__2 9.835
malloc_128MB_ThA__2 19.829 text 18.781

Table D.2: Absolute Entropy Android 13 reboot

D| Android Results 89

Object Ent Object Ent
malloc_16B_M__1 10.138 mmap_single_ThA__2 9.485
malloc_512B_M__1 9.900 malloc_16B_ThB__1 10.177
malloc_4KB_M__1 9.780 malloc_512B_ThB__1 9.966
malloc_256KB_M__1 10.054 malloc_4KB_ThB__1 9.682
malloc_4MB_M__1 9.031 malloc_256KB_ThB__1 10.307
malloc_128MB_M__1 5.736 malloc_4MB_ThB__1 5.893
mmap_single_M__1 9.632 malloc_128MB_ThB__1 4.488
malloc_16B_M__2 10.056 mmap_single_ThB__1 9.474
malloc_512B_M__2 9.868 malloc_16B_ThB__2 10.111
malloc_4KB_M__2 9.622 malloc_512B_ThB__2 9.947
malloc_256KB_M__2 10.453 malloc_4KB_ThB__2 9.717
malloc_4MB_M__2 9.032 malloc_256KB_ThB__2 10.607
malloc_128MB_M__2 5.737 malloc_4MB_ThB__2 3.901
mmap_single_M__2 9.625 malloc_128MB_ThB__2 4.585
malloc_16B_ThA__1 10.113 mmap_single_ThB__2 9.489
malloc_512B_ThA__1 9.864 stack_var_ThA 9.009
malloc_4KB_ThA__1 9.715 tls_var_ThA 10.150
malloc_256KB_ThA__1 10.343 stack_var_ThB 8.998
malloc_4MB_ThA__1 7.313 tls_var_ThB 10.042
malloc_128MB_ThA__1 4.548 argv 10.509
mmap_single_ThA__1 9.511 env 9.830
malloc_16B_ThA__2 9.985 stack_var_M 9.837
malloc_512B_ThA__2 9.841 global_var 5.676
malloc_4KB_ThA__2 9.851 tls_var_M 10.505
malloc_256KB_ThA__2 10.403 lib__1 9.835
malloc_4MB_ThA__2 4.450 lib__2 9.835
malloc_128MB_ThA__2 4.553 text 5.676

Table D.3: Absolute Entropy Change Android 13 reboot

91

List of Figures

3.1 Combined KDE and Histogram plot example 15

4.1 Architecture of the ASLR analysing tool 21
4.2 Architecture of Sampling Module . 22
4.3 Example of collected text file . 32
4.4 Example of raw_data.csv . 33

5.1 Memory Layout Linux 5.17.15 . 37
5.2 Memory Layout Linux 6.4.9 . 40
5.3 Memory Layout MacOS M1 Native . 43
5.4 Memory Layout MacOS M1 Rosetta . 45
5.5 Memory Layout Windows 11 . 47
5.6 Memory Layout Android 13 . 49

A.1 Probability Distribution Linux 5.17.19 . 62
A.2 Correlation Entropy Linux 5.17.19 . 63
A.3 Probability Distribution Linux 6.4.9 . 65
A.4 Correlation Entropy Linux 6.4.9 . 66

B.1 Probability Distribution MacOS M1 Native 70
B.2 Correlation Entropy MacOS M1 Native . 71
B.3 Probability Distribution MacOS reboot new sections 73
B.4 Probability Distribution MacOS M1 Rosetta 74
B.5 Correlation Entropy MacOS M1 Rosetta 75
B.6 Probability Distribution MacOS M1 Rosetta reboot new sections 77

C.1 Probability Distribution Windows 11 . 80
C.2 Correlation Entropy Windows 11 . 81
C.3 Probability Distribution Windows 11 reboot new sections 83

D.1 Probability Distribution Android 13 . 86
D.2 Correlation Entropy Android 13 . 87

93

List of Tables

3.1 Selected Sizes with allocation segment . 14

5.1 General Configuration Linux . 37
5.2 Information Linux 5.17.15 Sampling . 38
5.3 Entropy Groups Linux 5.17.15 . 38
5.4 Positive Correlation executable path Linux 5.17.15 39
5.5 Information Linux 6.4.9 Sampling . 39
5.6 Entropy Groups Linux 6.4.9 . 40
5.7 Positive Correlation executable path Linux 6.4.9 41
5.8 General Configuration MacOS . 42
5.9 Information MacOS M1 Native Sampling 42
5.10 Entropy Groups MacOS M1 Native . 43
5.11 Positive Correlation executable path MacOS M1 Native 44
5.12 Information MacOS M1 Rosetta Sampling 44
5.13 Entropy Groups MacOS M1 Rosetta . 45
5.14 Positive Correlation executable path MacOS M1 Rosetta 46
5.15 General Configuration Windows . 46
5.16 Information Windows 11 Sampling . 47
5.17 Entropy Groups Windows 11 . 48
5.18 General Configuration Android . 48
5.19 Information Android 13.0 Sampling . 49
5.20 Entropy Groups Android 13.0 . 50
5.21 Positive Correlation executable path Android 13.0 50

A.1 Absolute Entropy Linux 5.17.15 . 61
A.2 Absolute Entropy Linux 6.4.9 . 64
A.3 Absolute Entropy Change Linux 5.17.15 to Linux 6.4.9 67

B.1 Absolute Entropy MacOS M1 Native . 69
B.2 Absolute Entropy Change MacOS M1 reboot 72
B.3 Absolute Entropy MacOS M1 Rosetta . 73

94 | List of Tables

B.4 Absolute Entropy Change MacOS M1 Rosetta reboot 76

C.1 Absolute Entropy Windows 11 . 79
C.2 Absolute Entropy Windows 11 reboot . 82
C.3 Absolute Entropy Change Windows 11 reboot 83

D.1 Absolute Entropy Android 13 . 85
D.2 Absolute Entropy Android 13 reboot . 88
D.3 Absolute Entropy Change Android 13 reboot 89

95

List of Symbols

Variable Description SI unit

S estimated entropy bit

K number of samples .

97

Acknowledgements

I would like to express my sincere gratitude to my advisor Professor Mario Polino for
his continuous support, motivation, and knowledge. His guidance helped me throughout
my research and writing of this thesis efficiently and successfully. I would also like to
sincerely thank my co-advisor Lorenzo Binosi for his insightful assistance and feedback
which guided me to shape and enrich this research. This work wouldn’t exist without his
patient support.
In addition, I wish to acknowledge the entire NECSTLab for fostering a collaborative and
intellectually stimulating environment that motivated me throughout this project. I will
always be grateful for the knowledge acquired during the time spent with them.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background and Motivation
	Performance Metrics
	When
	What
	How

	Implementation Weakness
	Low Absolute Entropy
	Low Correlation Entropy

	OS Choice Motivation
	ASLR Analysis Overview and Improvement
	Linux and MacOS
	Windows
	Android
	Limitations and Improvements

	Approach
	Sampling
	Memory Objects
	Allocation Size Choice

	Pre-processing and Analysis
	Probability Distribution
	Entropy Estimator
	Sample Decision

	Implementation Details
	Sampling
	Sampling Program
	Sampling Launcher
	Rebooting Script
	Android

	Preprocessing
	Analysis

	Experimental Evaluation
	Linux
	Linux 5.17.15
	Linux 6.4.9

	MacOS
	MacOS M1 Native
	MacOS M1 Rosetta

	Windows
	Windows 11

	Android
	Android 13

	Weakness and Attack POC
	Weakness and Attacker Profile
	Attack Scenarios
	Fixed Position
	Random Position
	Distributed Attack

	Positive Correlation Attack POC

	Conclusions and future developments
	Bibliography
	Linux Results
	MacOS Results
	Windows Results
	Android Results
	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements

