
Executive Summary of the Thesis

A Combinatorial Multi-Armed Bandit algorithm for dollar volume
maximization in the dark pool problem

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Stefano Martino

Advisor: Prof. Francesco Trovò

Co-advisors: Martino Bernasconi de Luca, Edoardo Vittori

Academic year: 2020-2021

Abstract
We study the problem of developing a Smart Or-
der Routing algorithm able to maximize the dol-
lar volume, which is the total value of the traded
shares gained from selling assets of shares in a
multi-venue environment consisting of dark pool
venues. Our paper proposes a novel algorithm,
namely the DP-CMAB algorithm, that extends
the existing solutions by allowing the agent to
specify the desired unit selling price to cap-
ture the optimal dollar volume from the trading
venues. Moreover, we evaluate the DP-CMAB
performance in an environment built from real
market data and we show that our algorithm is
able to outperform state-of-the-art algorithms.

1. Introduction
Smart Order Routing (SOR) refers to a class
of automated algorithms used in online trading
that aim at finding the best way to execute a
trade. Our work extends the basic SOR prob-
lem, as it considers allocations across dark pools
venues. Dark pools are a type of equity trading
platform, characterized by their complete lack
of transparency. The Dark Pool Smart Order
Routing problem (DPSOR) consists of a sequen-

tial decision problem in which, at each time step
t, an agent is given a certain volume of V t units
of shares and has to consume as many of those
units by allocating them across K dark pools.
Dark pools’ complete lack of transparency is the
main characterizing feature of our problem, due
to the censoring aspect intrinsic to this type of
trades. Indeed, if v shares are allocated to a
dark pool and all of them are executed, the in-
vestor only learns that at least v units were avail-
able in the venue but not what would have been
the maximum amount that could have been ex-
ecuted. We propose a novel online learning al-
gorithm that frames the problem as a Combi-
natorial Multi-Armed Bandit (CMAB) problem
and that handles the censored feedback. Our ap-
proach extends [1, 4] to a more general setting
in which the agent can choose among a set of
available selling prices. This allows the agent to
submit an intra-venue routing, where more allo-
cations to the same financial venue at different
prices are possible.

2. Related Works
In [4], the authors consider an agent that re-
ceives a sequence of volumes V 1, . . . , V T , where

1

Executive summary Stefano Martino

V t ∈ [V]1, and has to allocate the available
units by choosing among K dark pools. Each
venue is characterized by a maximum consump-
tion level sti, which represents the available liq-
uidity, which is assumed to be drawn from a
fixed, yet unknown, distribution Pi. Theorem
3 in [4] states that the allocations made by
their algorithm are ϵ-suboptimal with probabil-
ity at most 1− ϵ after seeing a sufficient number
of samples. The work of [1] extends [4] to an
adversarial scenario, with improvements in the
i.i.d. setup as well. The authors assume that the
sequence of volumes and available liquidities are
chosen by an adversary, i.e., V t and sti may de-
pend on {v1i , . . . , v

t−1
i }Ki=1. The authors propose

an exponentiated gradient style algorithm that,
as stated by their Theorem 1, achieves a regret
of O(V

√
T lnK). Both [1, 4] evaluate a prob-

lem setting in which the agent is only interested
in consuming as many available units as possi-
ble. In a realistic scenario, an agent also wants
to maximize the dollar volume gained from the
allocations, and thus, needs to select among dif-
ferent possible selling prices. We extend [1, 4] by
proposing an algorithm that allows the player to
choose the desired ask price.

3. Problem Formulation
The DPSOR can be modeled as an online de-
cision problem in which, at each discrete time
step t ∈ [T] over a time horizon T ∈ N, an agent
is provided with a volume V t ∈ [V] of units of
an asset, where V t is sampled from an unknown
distribution. Given K ∈ N dark pool venues
and a vector P ∈ R+N of increasingly ordered
prices, pi < pj for i < j, the agent needs to de-
vise a routing strategy that simultaneously spec-
ifies how to distribute the given volume across
the venues and the desired selling price of each
allocated share. Specifically, the learner must
produce an allocation At ∈ NK × NN of these
units, whose generic element At

kn is such that
0 ≤ At

kn ≤ V t, for each k ∈ [K], n ∈ [N],
t ∈ [T], and represents the quantity allocated
by the agent at round t to the k-th dark pool
at price pn. The available units are treated as
perishable goods, meaning that all the shares
not allocated at round t will not be available
anymore during the following time step. Thus,
for each t ∈ [T], the agent’s allocation At has to

1We use notation [V] to indicate the set {1,...,V}

satisfy the following constraint, which formalizes
the allocation of the entire volume V t:

K∑
k=1

N∑
n=1

At
kn = V t.

Subsequently, the agent receives a feedback from
the environment, consisting of the number of
units rtkn consumed at round t by the k-th dark
pool at price pn. Here rtkn = min{At

kn, s
t
kn},

where stkn represents the actual liquidity present
at time t in the k-th dark pool at the n-th price.
If rtkn = At

kn, we denote the feedback as a cen-
sored observation, because the information the
agent gathers is that rtkn ≤ stkn. Otherwise, if
rtkn < At

kn, we say that the agent has received a
direct observation, since it must be the case that
rtkn = stkn. The goal of the agent is to find a
strategy that provides an order routing at each
time step t that maximizes the captured dollar
volume2, which is the stock’s share price multi-
plied by its volume:

Rt(A) =

K∑
k=1

N∑
n=1

rtkn · pn.

Since the routing of the whole volume may in-
volve multiple allocations across different dark
pools and at different prices, the problem can
be formulated using the Combinatorial Multi-
Armed Bandit framework introduced by [3].
More specifically, a generic arm (k, n, v), for
k ∈ [K], n ∈ [N], and v ∈ [V], represents an
allocation of v units to the k-th dark pool venue
at price pn. From now on, we will use ki, pni ,
and vi to refer to the dark pool, price and quan-
tity denoted by arm i ∈ [m] respectively. At
each round t, the agent needs to choose a super
arm St subject to a constraint S ⊆ 2[m], formally
defined as follows:

Definition 1. DPSOR valid super-arm A
valid super-arm St for the DPSOR problem at
time t is defined as:

St =

{
(ki, ni, vi)1≤i≤|St|

}
, s.t. :∑

i∈S
vi = V t,

∀a = (k, n, v), a′ = (k, n, q), a ∈ S =⇒ a′ ̸∈ S
2https://www.investopedia.com/terms/d/dollar-

volume-liquidity.asp

2

https://www.investopedia.com/terms/d/dollar-volume-liquidity.asp
https://www.investopedia.com/terms/d/dollar-volume-liquidity.asp

Executive summary Stefano Martino

Each arm i ∈ [m], is associated to a random
variable Xi, which is distributed as a Bernoulli
random variable with unknown parameter µi

and describes the probability that the alloca-
tion specified by arm i is absorbed by the en-
vironment. Therefore, the expectation vector
µ = (µ1, . . . , µm), contains the estimates of the
success probabilities of all the arms. The arm
i allocated by the agent results in a sale of
rki,ni

= min{vi, ski,ni
} units, where ski,ni

is the
actual liquidity present in dark pool ki at price
pni . The reward of playing a super-arm S is:

Rt(S) =
∑
i∈S

rkini
· pni ,

which corresponds to the dollar volume made
by selling the allocated units. Let us define
rµ(S) = E[Rt(S)] and r∗µ = maxS∈Srµ(S).
Based on the allocations executed by playing
super-arm St, for each allocation i ∈ St, the
agent observes the arm payoff xi = 1[rkini

= vi],
which is a realization of the Bernoulli random
variable Xi. We say that arm i is successful if
dark pool ki manages to absorb vi units at price
pni (xi = 1), otherwise we denote it as a failure
(xi = 0). We make the following assumption on
the problem setting:

Assumption 1. If the allocation (k, n, v) was
successful, then all the allocations (k, n̂, v̂), for
0 ≤ v̂ ≤ v and n̂ ∈ [N] such that pn̂ ≤ pn are
successful. Likewise, if the allocation (k, n, v)
was a failure, then every allocation (k, ñ, ṽ), for
ṽ ≥ v and ñ ∈ [N] such that pñ ≥ pn are fail-
ures.

As a consequence, when a super-arm St is
played, not only the outcomes of the arms con-
tained in St are revealed, but also other arms
(allocations) might reveal their payoffs, and the
reward the agent receives depends on the out-
comes of these arms as well. In fact, sup-
pose that the allocation (ki, ni, vi) is successful
(xi = 1). Then, as stated by Assumption 1, we
also infer all the payoffs corresponding to the
arms (k, n̂, v̂), for 0 ≤ v̂ ≤ vi and pn̂ such that
pn̂ ≤ pni . The complementary case, in which an
allocation is a failure (xi = 0), applies as well.
Now we proceed to check that our formulation
satisfies the assumptions required by the CMAB
framework of [3], namely the monotonicity prop-
erty and the existence of a bounded smoothness

Algorithm 1 DP_CMAB(dark pools K, prices
P, bound on volume V)

1: Initialize α1
knv = β1

knv = 1 ∀k ∈ [K], n ∈
[N], v ∈ [V]

2: for t ∈ [T] do
3: Let V t be the volume given to the agent
4: Define θtkinivi

according to Equation (2);
let θ = (θ1, ..., θm)

5: At ← Allocation(V t,K,P,θ)
6: Submit the allocations according to At

7: Observe rtkn
8: αt+1, βt+1 ← Update(αt, βt, rtkn, At

kn)
9: end for

function f(·). Given two super arms S ∈ S and
S′ ∈ S, such that for all i ∈ [m], µi ≤ µ′

i, the
expected dollar volume made by playing S is
not larger than the expected dollar volume ob-
tained by playing S′. More specifically, if for all
i ∈ [m], µi ≤ µ′

i, rµ(S) ≤ rµ′(S) for all S ∈ S.
Thus, the monotonicity constraint of [3] is satis-
fied. Finally, the bounded smoothness function
is f(x) = V ·pmax·x, i.e., increasing all probabili-
ties of arms by x can increase the expected dollar
volume by at most V ·pmax ·x, where pmax is the
highest ask price. Suppose that, as stated by [3],
we have a (γ, σ)-Approximation Oracle able to
compute the sub-optimal super arms. We define
the (γ, σ)-Approximation Pseudo-Regret for the
DPSOR problem as follows:

Definition 2. ((γ, σ)-Approximation
Pseudo-Regret) for the DPSOR prob-
lem The (γ, σ)-Approximation Pseudo-Regret
for the DPSOR problem after N rounds of a
given policy U that picks the super-arm St at
round t is defined as:

RegN (U) = N · γ · σ · r∗µ − E

[
N∑
t=1

rµ(St)

]
.

4. DP-CMAB Algorithm
We estimate the vector of expectations of all
arms, µ = (µ1, ..., µm), using a Bayesian ap-
proach. More specifically, we consider the ran-
dom variable Xi, describing the random out-
come of the generic arm i, as distributed ac-
cording to a Bernoulli distribution with param-
eter µi. Therefore, we estimate the expectation
probability µi of the arm (ki, ni, vi) by keeping

3

Executive summary Stefano Martino

the quantities αt
ki,ni,vi

and βt
ki,ni,vi

, that indi-
cate the number of successes and the number of
failures of arm i up to round t respectively. A
high-level pseudo-code of the DP-CMAB algo-
rithm is provided in Algorithm 1. At the be-
ginning of the algorithm, all entries of α and β
are set to 1, which reduces the Beta distribution
corresponding to each arm to a Uniform distri-
bution. At each time step t, the agent is given
a volume V t to allocate. Line 4 defines θtk,n,v,
which represents the agent’s current estimate of
the probability that at least v units will be con-
sumed by dark pool k at price pn. Algorithm 1
can choose between three different strategies to
compute θtk,n,v:

θtknv ∼ Beta

(
αt
knv, β

t
knv

)
,

θtknv =
αt
knv

αt
knv + βt

knv

+

√
2 log(t)

αt
knv + βt

knv − 2
,

θtknv = QBeta

(
1− 1

t(log T)5

)
,

(2a)

(2b)

(2c)

where Qbeta denotes the quantile of the Beta dis-
tribution. We refer to DP-CTS as the agent fol-
lowing the Thompson Sampling strategy (Equa-
tion (2a)), DP-CUCB as the agent implement-
ing the UCB strategy (Equation (2b)) and DP-
Bayes UCB as the agent using the Bayes UCB
strategy (Equation (2c)). Line 5 invokes the
Allocation subroutine, that computes the allo-
cation matrix defining the routing of the vol-
ume. As the agent receives feedbacks from the
environment, it uses the gathered evidence to
update its beliefs (Line 8).

Algorithm 2 Allocation(Volume V t, dark pools
K, prices P, estimates θ)

1: Initialize At
kn = 0 ∀k ∈ [K], n ∈ [N]

2: for u ∈ [V t] do
3: k∗, n∗ = argmaxk,n{pn · θtk,n,At

kn+1
}

4: At
k∗n∗ ← At

k∗n∗ + 1
5: end for
6: return At

Line 3 of Algorithm 2 implements the Greedy
maximization step, responsible for the choice of
the best allocations to submit based on the max-
imization of the expected dollar volume.
Suppose that the agent has already allocated
q ∈ [V t − 1] units to the k-th dark pool at price

pn (At
kn = q). Then, θt

k,n,At
kn+1

represents the
agent’s current estimate of the probability that
an additional unit will be consumed by that dark
pool and price pair. The quantity pn · θtk,n,At

kn+1
,

thus, represents the dollar volume the agent ex-
pects to make from allocating such additional
unit to the (k, n) pair of dark pool and price.
For each unit u ∈ [V t] to allocate, the Greedy
Maximization step finds the best pair (k∗, n∗)
of dark pool and price that maximizes the ex-
pected dollar volume gained by adding the u-th
unit to the allocation of the k∗-th dark pool at
price pn∗ . Note that Algorithm 2 performs the
role of the oracle introduced by [3], in that it
is responsible of building the super arms repre-
senting the allocations. The construction of the
arms is achieved in a time polynomial with re-
spect to the number of dark pools K, the number
of prices N and the volume V .

4.1. Update
Each time the algorithm receives a feedback
from the environment, it uses the observation
to improve its estimates and make increas-
ingly accurate predictions about the environ-
ment. The algorithm can choose among three
different types of updates, namely the no propa-
gation update, the quantity propagation update
and the full propagation update. The no propa-
gation update (Algorithm 3) does not exploit the
existing correlations between the arms stated by
Assumption 1 and decides whether to increment
α or β based on the fact that that allocation
was successful (censored observation) or a fail-
ure (direct observation).

Algorithm 3 No_propagation(successes αt, fail-
ures βt, units sold rtkn, units allocated At

kn)

1: if rtkn = At
kn then

2: αt+1
k,n,At

kn
← αt

k,n,At
kn

+ 1

3: else
4: βt+1

k,n,At
kn
← βt

k,n,At
kn

+ 1

5: end if
6: return αt+1,βt+1

Instead, the quantity propagation update (Al-
gorithm 4) uses Assumption 1 and propagates
the feedback to non-played arms, exploiting the
quantity correlations between the allocations.

4

Executive summary Stefano Martino

Algorithm 4 Quantity_propagation(successes
αt, failures βt, units sold rtkn, units allocated
At

kn)

1: αt+1
k,n,v̂ ← αt

k,n,v̂ + 1, 0 ≤ ṽ ≤ rtkn
2: if rtkn ̸= At

kn then
3: βt+1

k,n,ṽ ← βt
k,n,ṽ + 1, ∀ṽ > rtij

4: end if
5: return αt+1,βt+1

In the full propagation update (Algorithm 5),
the agent uses Assumption 1 to propagate the
feedback to non-played arms, exploiting both
the quantity and price correlations between the
allocations.

Algorithm 5 Full_propagation(successes αt,
failures βt, units sold rtkn, units allocated At

kn)

1: αt+1
k,n̂,v̂ ← αt

k,n̂,v̂ + 1, ∀ 0 ≤ v̂ ≤ rtkn, n̂ ∈ [N]
s.t. pn̂ ≤ pn

2: if rtkn ̸= At
kn then

3: βt+1
k,ñ,ṽ ← βt

k,ñ,ṽ + 1, ∀ṽ > rtkn, ñ ∈ [N] s.t
pñ ≥ pn

4: end if
5: return αt+1,βt+1

4.2. Regret Analysis
The DP-CUCB agent implements a strategy
equivalent to the one adopted by the CUCB al-
gorithm introduced by [3]. Similarly, our DP-
CTS agent uses a strategy matching the CTS
algorithm introduced by [5]. Their algorithms
exploit an oracle, that, given all the terms
(θi)1≤i≤m, computes the super arm S to play.
Algorithm 2 can be seen as such an oracle, that,
given (θi)1≤i≤m along with the knowledge of the
problem instance, computes the super arm cor-
responding to the best allocation in terms of dol-
lar volume. The applications of [3, 5] help us
finding an upper bound for the expected regret
of the DP-CUCB and DP-CTS agents without
propagation:
Theorem 4.1. The expected regret of the DP-
CUCB and DP-CTS algorithms implementing
the no propagation update for the DPSOR prob-
lem with a max volume V , K dark pools and N
prices with a max price pmax after T rounds is
at most:

E[R(T)] ≤ O
(
(V · pmax)

2 · ln(T) + V KN
)

5. Experiments
In this section we analyze the empirical perfor-
mance of the DP-CMAB algorithms, comparing
them to the baselines represented by the agents
studied in [1, 4]. In our experiments, every agent
plays R independent runs, each consisting of T
time steps, in which the agent has to gain the
best possible dollar volume from allocating V t

units, each consisting of 20000 shares of an as-
set across K dark pools. Since [1, 4] do not take
into account the possibility to specify the price
to sell the shares to, we devised two strategies
their algorithms can implement:
• The Random price selection strategy selects

a random price at the beginning of every
run r ∈ [R], and continues to selling the
units to that fixed price for each t ∈ [T] of
that run.
• The Oracle price selection plays each run
r ∈ [R] and time step t ∈ [T], by sell-
ing the units to the oracle price p∗, which
is the best single price that maximizes the
expected cumulative dollar volume across
all runs R. In practice, p∗ is the unique
price the agent would select if it had per-
fect knowledge of the environment, i.e. if it
could have access to the actual underlying
liquidity present in the dark pools.

The experiments were made by setting the fol-
lowing parameters:
• Time steps T = 1000;
• Runs R = 20;
• Number of dark pools K = 10;
• Volume to be sold V t = 10 for t ∈ [T];
• P =< 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 >.

We generated the dark pools liquidity using real
historical market data, extracted from the Apple
(AAPL) order books messages of the NASDAQ
exchange, generated by following the steps de-
tailed by [2] on the data found here: ftp://emi.
nasdaq.com/ITCH/Nasdaq%20ITCH. Since our
agent’s purpose is to sell the units it is provided
with, we considered only the messages marked as
Executed on the Buy side, consisting of all the
accepted and completed buy orders on behalf of
a client.

5

ftp://emi.nasdaq.com/ITCH/Nasdaq%20ITCH
ftp://emi.nasdaq.com/ITCH/Nasdaq%20ITCH

Executive summary Stefano Martino

0 200 400 600 800 1,000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

·1010

Time steps

R
eg
re
t

DP-CUCB No propagation
DP-CUCB Quantity propagation
DP-CUCB Full propagation
DP-CTS No propagation
DP-CTS Quantity propagation
DP-CTS Full propagation
DP-Bayes UCB No propagation
DP-Bayes UCB Quantity propagation
DP-Bayes UCB Full propagation

Figure 1: Regret of the DP-CMAB agents.

Figure 1 shows the mean and the 95% confidence
intervals of the regret of the DP-CMAB agents.
The full propagation update strategy achieves a
better performance in terms of regret than the
quantity propagation update, which, in turn, en-
joys a lower regret than the agents not imple-
menting any kind of propagation.

0 200 400 600 800 1,000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

·1010

Time steps

R
eg
re
t

Agarwal random
Agarwal oracle
Ganchev random
Ganchev oracle
DP-CUCB Full propagation
DP-CTS Full propagation
DP-Bayes UCB Full propagation

Figure 2: Regret of the DP-CMAB agents im-
plementing the full propagation update and the
baselines.

Figure 2 compares the regret of the DP-CMAB
agents exploiting the full propagation update
and the baseline agents implementing the ran-
dom and oracle price selection strategies. Note
that the confidence intervals of the baseline
agents using the random price selection have
been omitted for clarity reasons. The baseline
agents implementing the random price selection
achieve a very high regret, while the baseline
agents implementing the oracle price selection
strategy manage to perform better thanks to the
a priori knowledge about the liquidity distribu-
tion.

0 200 400 600 800 1,000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

·107

Time steps

D
o
ll
a
r
vo
lu
m
e

DP-CTS Full propagation
Ganchev oracle
Ganchev random
Agarwal oracle
Agarwal random

Figure 3: Average dollar volume of the DP-CTS
full propagation agent against the baselines.

Figure 3 shows the average dollar volume made
at each time step by the DP-CTS Full propaga-
tion agent compared to the baselines. Our agent
manages learn an allocation policy that is bet-
ter than the one produced by the baselines using
the oracle strategy, without having access to any
prior information about the environment.

6. Conclusions
The main focus of our work is to design a
Smart Order Routing algorithm to maximize the
trader’s dollar volume gained from the alloca-
tion of given units of assets across dark pool
venues. We accomplished this result by intro-
ducing the DP-CMAB algorithm which over-
comes the limitations of the existing works in
the dark pool literature. Indeed, [1, 4] consider
a scenario in which an agent cannot specify the
selling price of the shares. In our paper, we com-
pared the empirical performance of our agents
with the baselines of [1, 4], showing how the DP-
CMAB agents can empirically outperform state-
of-the-art algorithms by leveraging the knowl-
edge of the problem setting. Further develop-
ments could involve the extension to a scenario
in which the trader is not limited to only sell
the shares, but has the possibility to buy assets
from the dark pools as well.

References
[1] Alekh Agarwal, Peter Bartlett, and Max

Dama. Optimal allocation strategies for the
dark pool problem. PMLR, 13–15 May 2010.

[2] Martino Bernasconi-De-Luca, Luigi Fusco,
and Ozrenka Dragić. martinobdl/itch:
Itch50converter, 2021.

[3] Wei Chen, Yajun Wang, and Yang Yuan.
Combinatorial multi-armed bandit: General
framework and applications. 28(1):151–159,
17–19 Jun 2013.

[4] Kuzman Ganchev, Michael J. Kearns,
Yuriy Nevmyvaka, and Jennifer Wortman
Vaughan. Censored exploration and the dark
pool problem. CoRR, abs/1205.2646, 2012.

[5] Siwei Wang and Wei Chen. Thompson
sampling for combinatorial semi-bandits.
PMLR, 2018.

6

	Introduction
	Related Works
	Problem Formulation
	DP-CMAB Algorithm
	Update
	Regret Analysis

	Experiments
	Conclusions

