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1. Introduction
One of the most relevant topic in actuarial lit-
erature is the definition of the premium prin-
ciples, namely rules that assign a price to an
insurance risk. The thesis aims to extend the
treatment already existent for the static context
to the dynamic one, considering thus the loss of
an insurance portfolio as a stochastic process.
Therefore, in the first part of the work, risks
are modeled as single random variables, and
some premium principles are shown with their
properties (developing the notions contained in
[5]). Then, there is a theoretical part in which
many mathematical tools are reviewed, with a
particular care with respect to point processes
and marked point processes (see [1] for details),
in order to have the instruments for approach-
ing the dynamic risk models. Eventually, the
Cramér-Lundberg model and a risk model with
the loss distributed as a Compound Hawkes are
discussed, and the premium principles presented
in the first section are discussed again with a
study of their properties in this context. This
last part represents the most original contribute
of the thesis to the literature, since it provides
a new treatment and a theoretical basis to the
concept of premium rate.

2. Premiums in static context
Let (Ω,F , P ) be a probability space in which
Ω is the set of states of the world or possible
outcomes, F ⊆ 2Ω is a σ-algebra that is the
collection of events in Ω and P is a probabil-
ity measure. Let χ be the set of non-negative
random variables measurable in the probability
space defined before, a premium principle is de-
fined as a functional from the set of insurances to
the set of real non-negative numbers, therefore:

H : χ → [0,+∞)

2.1. Catalog and properties of the
premium principles

In this framework, the desired properties for a
"good" premium principle are:

1. Conditional state dependence: For a given
market condition, the premium for a risk X
depends only on its ddf.

2. Monotonicity: Let X and Y be in χ, if
X(ω) ≤ Y (ω) a.s., then H(x) ≤ H(y)

3. Comonotonic additivity: If X and Y are
in χ and comonotonic,then: H(X + Y ) =
H(X) +H(Y )

4. Continuity: If X ∈ χ and d ≥ 0,
then: limd→0+H((X − d)+) = H(X) and
limd→∞H(min(X, d)) = H(X)
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5. Risk loading: H(X) ≥ E[X] for all X ∈ χ.
6. No unjustified risk loading: if X = c, X ∈ χ

and c constant, then H(X) = c.
7. Maximal loss: H(X) ≤ esssup(X) for all

X ∈ χ
8. Translation equivariance or invariance:

H(X + a) = H(X) + a for all X ∈ χ and
a ≥ 0.

9. Scale equivariance or invariance: H(bX) =
bH(X) for all X ∈ χ and b ≥ 0.

10. Additivity: H(X +Y ) = H(X)+H(Y ) for
all X,Y ∈ χ.

11. Subadditivity: H(X + Y ) ≤ H(X) +H(Y )
for all X,Y ∈ χ.

12. Superadditivity: H(X + Y ) ≥ H(X) +
H(Y ) for all X,Y ∈ χ.

13. Additivity for independent risks:H(X +
Y ) = H(X) + H(Y ) for all X,Y ∈ χ in-
dependents.

14. Preserves FSD ordering: If SX(t) ≤ SY (t)
for all t ≥ 0, then H(X) ≤ H(Y ).

15. Preserves stop-loss ordering:E[X − d]+ ≤
E[Y − d]+ for all d ≥ 0, then H(X) ≤
H(Y ).

The following, instead, are the premium princi-
ples discussed:

• Net premium principle: H(X) = E[X];
• Expected value premium principle:
H(X) = (1 + θ)E[X], θ > 0;

• Variance premium principle: H(X) =
E[X] + αV ar(X), α > 0;

• Standard deviation premium principle:
H(X) = E[X] + α

√
V ar(X), α > 0;

• Wang’s premium principle: H(X) =∫∞
0 g(Sx(t))dt;

In particular, Sx(t) represents the survival
function of the risk X, while g : [0, 1] →
[0, 1] is non-decreasing with g(0) = 0 and
g(1) = 1.

For each premium, the properties are proved or
denied with a counterexample.

2.2. Decomposition of the premium
functional into risk and deviation
measures

Another central result for the analysis of the
premium principles in the static context, due to
Nendel, Riedel and Schmeck (see [4] for further

details), is the following:
Theorem 2.1. H is a premium principle
normed and translation invariant ⇐⇒ H(X) =
R(X) +D(X) such that R(X) is a well-defined
monetary risk measure and D(X) is a well-
defined deviation measure.
The theorem 2.1 offers a new point of view for
the comprehension of the premiums, indeed the
variance premium principle and the standard de-
viation one have the first term in the sum which
is a risk measure, and the second, conversely,
which is a deviation measure. The net value pre-
mium, the expected value one and the Wang’s
one are instead only monetary risk measures.
This is easily proved observing that they enjoy
the property of monotonicity, and thus they have
deviation part null.

3. Premiums in dynamic con-
text

The risk models provided allow to treat the dy-
namics of the portfolio surplus of an insurance
company, which is subjucted to a loss process,
and collects premiums with a rate c over time.
The aim of the analysis is to define the quan-
tity c according to the principles of the previous
section and show its properties.

3.1. Cramér-Lundberg model
Let consider the Cramér-Lundberg model:

Rt = R0 + ct−
Nt∑
n=1

Zn (1)

in which:

• R0 ≥ 0 represents the starting value of the
portfolio.

• c > 0 is the premium rate, namely the
model assumes that the premium income is
continuous over time, and, therefore, pro-
portional in any time interval to the interval
length.

•
∑Nt

n=1 Zn is a compound Poisson with in-
tensity λ. Since the sequence of {Zn} rep-
resent the claims, they must have positive
support.

The model assumes as hypothesis that Nt and
Zn are independent ∀t ≥ 0 ∀n ≥ 1. It is possible
to compute the mean and the variance of the

2



Executive summary Luca Russo

loss in (1) with the purpose of extending the
premium principles listed before to this model.
Thus, observing that defining Lt =

∑Nt
n=1 Zn,

one can have:

E[Lt] = λtE[Z]

V ar(Lt) = λtE[Z2];

Knowing these quantities, the estimation of the
premium rate c exploiting the premium prin-
ciples listed follows straightforwardly, indeed,
considering for each functional H described
above the equation ct = H(Lt) ∀t, it is possible
to have:

• Net premium principle: c = λE[Z];
• Expected value premium principle: c = (1+
θ)λE[Z], θ > 0;

• Variance premium principle: c = λE[Z] +
αλE[Z2], α > 0;

• Standard deviation premium principle: c =
λE[Z] + α

√
λ
tE[Z2], α > 0;

The study of the properties of the premiums in
this context allows to achieve surprising results.
Indeed, all the properties valid in the static case
keep holding true, and other ones hold in the
dynamic case. In particular, it is important the
property of monotonicity for the variance and
standard deviation premium rates, because, by
the result of decomposition of the premium pre-
viously explained, they can be now interpreted
as monetary risk measures.

3.2. Compound Hawkes risk model
Many of the theoretical concepts presented on
the Hawkes processes are developed also in ([3]).
An Hawkes process is a point process Ft-adapted
such that, defined its conditional intensity func-
tion as:

λ∗
t = lim

h→0

E[Nt+h −Nt|Ft]

h

then, it holds:

P (Nt+h −Nt = m|Ft) =


λ∗
th+ o(h),m = 1

o(h),m > 1

1− λ∗
th+ o(h),m = 0

with the conditional intensity function of the
form:

λ∗
t = λ+

∫ t

−∞
µ(t− s)dNs

The treatment is done in particular for the ex-
ponentially decaying Hawkes process, namely:

µ(t) = αe−βt

with α, β > 0 and α < β for guaranteeing non-
explosivity.
Eventually, following the procedure contained in
([2]), after some computations, it is known the
mean of the process, which is:

E[Nt] =
λβ(−1 + e(α−β)t − (α− β)t)

(α− β)2
+

+
λ(−1 + e(α−β)t)

α− β

(2)

In this framework, it is possible to define the
following risk model:

Rt = R0 + ct−
Nt∑
n=1

Zn (3)

in which:

• R0 and c > 0 have the same meaning in (1)
•
∑Nt

n=1 Zn = Lt represents as usual the
loss of the portfolio. {Zn} is a sequence
of random variable i.i.d with positive sup-
port, while Nt is an exponentially decaying
Hawkes process.

As in (1) the counting process and the claims
are independent. The main difference with the
Cramér-Lundberg model is that the Compound
Hawkes one has not constant intensity in the ar-
rival of the claims, which represents one of the
principal drawbacks of (1), modeling thus possi-
ble clustering of events.
The theory on marked point processes states
that, under the hypothesis of independence be-
tween the counting process and the sequence of
random variables:

E

[ Nt∑
n=1

Zn

]
= E[Nt]E[Z]

Exploiting (2), it is possible to extend the net
value and expected value principle to the model
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(3), therefore:

c =(1 + θ)

(
λβ(−1 + e(α−β)t − (α− β)t)

(α− β)2t
+

+
λ(−1 + e(α−β)t)

(α− β)t

)
E[Z];

The net premium rate is obtained imposing θ =
0. There are two possible choices: the first con-
sists in fixing a time horizon t for covering the
risks in [0, t], the second one instead is recomput-
ing the premium rates continuously over time, so
updating in tn ∀n = 0, ..., N − 1, following the
same principle with 0 = t0 < t1 < ... < tn <
... < tN = t. Even though (3) represents a much
more complicated choice with respect to (1), the
study of c in this framework shows that the pre-
mium rate has the same properties which enjoys
in the Cramér-Lundberg model.

Then, the work deals with the possible error
committed in a context which presents cluster-
ing, therefore the real dynamics of the portfolio
surplus follows (3), but the premium rate is com-
puted following the expected value principle of
the model (1). Considered Rt as in (3), and the
quantity:

∼
Rt = R0 +

∼
ct−

Nt∑
n=1

Zn

where ∼
c = (1 + θ)λE[Z] is as in the com-

pound Poisson case, but the loss is a Compound
Hawkes with Nt exponentially decaying Hawkes
process with parameters α, β, λ, and defined the
error as:

ϵt = Rt −
∼
Rt = (c− ∼

c)t

it is easy to show that the quantity ϵt grows up
linearly with respect to t in both the case with
fixed time horizon and with discrete monitoring.
This means that an insurance company which
collects premium using as reference the Cramér-
Lundberg model, but in a situation in which the
loss presents the clustering property as in the
Compound Hawkes one, suffers on average an
unexpected loss that explodes with t −→ +∞

Lastly, it is considered the case when the pre-
mium rate is defined in order to be proportional
to the intensity of the counting process as in

the case of the Compound Poisson, even though
this does not respect the definition of the net
premium principle, thus:

c = λtE[Z]

The goal of the treatment is to show that this is
however a reasonable choice for defining the pre-
mium rate. Let consider the condition for which
the insurance company does not lose money on
average over time with the rate presented above:

E[ct− Lt] ≥ 0 (4)

With some computations, one can notice that:

lim
t−→0+

E[ct− Lt] = 0

lim
t→+∞

E[ct− Lt] = − λ

α− β
E[Z] > 0

Moreover, the study of the derivative of the
quantity E[ct−Lt] proves that it is increasingly
monotone. This makes (4) respected ∀t, thus
an insurance company which uses the premium
rate based on the intensity λt gains money on
average.

4. Tables
In the sequel are reported the tables which re-
sume the properties of the principles in the dif-
ferent cases. As one can observe, in the dy-
namic case the expected value premium prin-
ciple gains the maximal loss property. The vari-
ance and standard deviation one, instead, obtain
the monotonicity, which implies also the preserv-
ing of the first stochastic dominance and stop-
loss orderings, and the maximal loss property,
with respect to the static context.

5. Conclusions
The present work achieves two different goals:
the first is providing a complete and rigorous
treatment of the modeling of premiums in the
static case, gathering the existing literature in a
single book. The second is extending the con-
cepts of the first part to dynamic risk models,
defining with a solid mathematical background
the premium rates and showing their properties.
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Properties 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Net pp Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Expected value pp Y Y Y Y Y N N N Y Y Y Y Y Y Y
Variance pp Y N N Y Y Y N Y N N N N Y N N
Std pp Y N N Y Y Y N Y Y N N N N N N
Wang pp Y Y Y Y Y Y Y Y Y N Y N N Y Y

Table 1: Properties of the premium principles treated in the static context.

Properties 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Net pp Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Expected value pp Y Y Y Y Y N Y N Y Y Y Y Y Y Y
Variance pp Y Y N Y Y N Y Y N N N N Y Y Y
Std pp Y Y N Y Y N Y Y Y N N N N Y Y

Table 2: Properties of the premium rates in the Cramér-Lundberg model. The net premium and the
expected value premium present the same properties also in the Compound Hawkes risk model.

The notions developed can be useful for further
works in which classical problems of the actuar-
ial sector are solved considering the risk models
with the premium rates studied here.
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