
Executive Summary of the Thesis

Neural Network Splitter: Optimal Decomposition of a Neural Network
and its Distribution on Multiple Microcontrollers

Laurea Magistrale in Mathematical Engineering - Ingegneria Matematica

Author: Andrea Santamaria

Advisor: Prof. Marco Marcon

Co-advisors: Biagio Montaruli, Danilo Pietro Pau (STMicroelectronics)

Academic year: 2020-2021

1. Introduction
In recent years, Deep Learning (DL) has
achieved great success and state-of-the-art per-
formance in numerous applications providing
an opportunity for integrating Machine Learn-
ing (ML) into low power resource constrained
devices such as sensors and microcontrollers
(MCUs). Indeed, the opportunity of deploying
Neural Network (NN) models as close as possible
to the sensing device to process acquired data,
is key to develop autonomous Internet of Things
(IoT) systems and opens up to many benefits
for lots of real-world embedded applications [1].
However, the deployment of accurate NN mod-
els on tiny devices represents a critical challenge
due to the aggressive computational and mem-
ory constraints. The problem of reducing the
complexity of DL solutions to match the tech-
nological constraints of IoT systems is becoming
more and more relevant from both the scientific
and technological perspective [1, 2]. Solutions
present in the literature address such a problem
using different approximation and optimization
techniques (i.e., parameter pruning and sharing,
quantization and knowledge distillation). Un-
fortunately, these approaches often require to
re-design or modify the models’ topology to be

deployed and may imply a reduction in terms
of accuracy. An alternative approach consists in
adopting a distributed computing paradigm by
partitioning a NN model into sub-models to be
deployed on several devices. In this context, we
propose the Neural Network Splitter, a software
tool whose goal is to automatically distribute a
given pre-trained NN on multiple MCUs in order
to optimize an objective function while satisfy-
ing the memory and computational constraints
of the devices themselves as well as preserving
the model architecture and its level of accuracy.
With respect to the literature, the novelties of
this work can be summarized as follow:
• the methodology adopted to solve the prob-

lem, which takes into account the devices’
memory and computation capabilities, as
well as the communication requirements;

• a detailed mathematical formulation for the
problem definition which extends the for-
mulation of [2] in order to solve overlapping
problems.

To validate the proposed methodology, an ex-
tensive experimental campaign has been carried
out considering several heterogeneous NN archi-
tectures and multiple MCUs.

1



Executive summary Andrea Santamaria

2. Problem Definition and As-
sumptions

The problem of how to optimally distribute
the execution of a pre-trained NN on multi-
ple tiny devices can be modeled as an Opti-
mization Problem (OP). Two objective functions
have been taken into account:
• minimization of the total inference latency;
• maximization of the throughput.

The solution of the problem assigns each layer to
a MCU in order to optimize the chosen objec-
tive function while satisfying the technological
constrains imposed by the IoT system, as well
as preserving the behavior of the original model
(same architecture and accuracy). Despite the
formalization is general enough to work with any
NN topology, we assumed to use sequential Con-
volutional Neural Networks (CNNs).

2.1. Mathematical Formulation
Let a CNN with n layers to be deployed on d
devices. Without loss of generality, we can rep-
resent the CNN as a computational graph where
the nodes are the layers, while the edges corre-
spond to the input/output tensors of a layer. As-
suming to assign a sequential number to the lay-
ers sorted in topological order, let us define the
layers set N = {1, . . . , n} and let us also define
D = {1, . . . , d} as the set of the available devices
each one represented by a unique ID. Therefore,
there are dn candidate solutions expressed by
Pp = {(layer1, dev1), . . . , (layern, devd)} for p =
1, . . . , dn, where each tuple is a layer-device as-
signment and let P = {P1, . . . , Pdn} be the can-
didates’ set. Given the solution of the problem,
a sub-model is obtained by grouping together all
the consecutive layers assigned to the same de-
vice. By enumerating the sub-models in topo-
logical order, let us define M = {1, . . . ,m} as
the set of sub-models, where 1 ≤ card(M) ≤ n.
Let N (m) ∀m ∈ M , a partition of N , be the set of
the consecutive layers belonging to the mth sub-
model. Similarly, let M (i) = {mi

first, . . . ,m
i
last}

∀i ∈ D, a partition of M , be the set of the sub-
models (in topological order) processed by the
ith device. It is worth noting that a device can be
assigned to one or more non-consecutive layers,
which means that it can process one or more sub-
models. Each layer is characterized with three
properties: FLASH memory size, RAM mem-
ory size and number of Multiply-Accumulate

(MAC) operations. As for the devices, they
are abstracted through their memory proper-
ties (FLASH and embedded RAM memory size),
and performance properties, i.e. operating CPU
clock frequency (CPUFREQ) and average num-
ber of cycles per MAC (CpM).
A candidate solution must satisfy these memory
constraints in order to deploy the obtained sub-
models on the corresponding devices:
• there must be at least one device on which

to deploy the most memory demanding
layer in terms of FLASH and RAM size;

• for each device, its FLASH (RAM) size has
to be always greater or equal than the total
FLASH (maximum RAM) size required to
store all the sub-models assigned to it.

On the other hand, the performance properties
are used in (1) to define the layer computational
latency as the time (in seconds) required to pro-
cess a layer j ∈ N by a device i ∈ D. It is worth
noting that if j not assigned to i, then Lij is
equal to zero.

Lij =
MACj CpMi

CPUFREQi
(1)

Furthermore, let us define in (2) the total compu-
tational latency, one of the two elements needed
to compute the total inference latency.

L =
∑
i∈D()

∑
m∈M(i)

∑
j∈N(m)

Lij (2)

Similarly, let us define in (3) the communication
latency as the time (in seconds) required by a
device i to send a certain amount of bytes to
a device h at a given baud rate. It could be
equal to zero where there is no communication
between the devices, i.e. there is no pair of layers
assigned to them, one assigned to i and one to
h, such that it contains two consecutive layers.

T ih =
Bytes to transfer

baud rate
(3)

Then, is it possible to define in (4) the total com-
munication latency and, finally, in (5) the total
inference latency.

T =
∑
i,h∈D

T ih (4)

I = L+ T (5)

2



Executive summary Andrea Santamaria

(5) represents the time (in seconds) needed to
perform an entire inference and shall be min-
imized when adopting the first policy to solve
the problem. The other policy we considered
is the maximization of the throughput, which
is basically the inverse of the waiting time (6)
to process the next input when having multiple
input samples to process one at a time.

throughput =
1

waiting time
(6)

Without loss of generality, let us identify the
unique device with the highest computational
latency:

i = argmax
i∈D

∑
m∈M(i)

∑
j∈N(m)

Lij (7)

and the set R(i) = range(mi
first,m

i
last) \ M (i)

which contains all the sub-models made of "in-
termediate" layers, namely those models includ-
ing the layers that are not assigned to i in the
schedule, but their processing must be done be-
tween the layers of the first and the last sub-
models assigned to i. It is worth noting that
to define this set we took advantage of the
range(a,b) function that generates the sequence
of numbers starting from the given start integer
a to the stop integer b.
Finally, it is possible to define the waiting time
as a sum of three contributions (in seconds):

• the time required by the device i to process
all the sub-models assigned to it;

• the sum of the times required by the device
i to transfer its output data to the next de-
vices;

• the time needed to process all the "inter-
mediate" layers.

2.2. Improvement of the Waiting
Time Definition

We improved the definition of the waiting time
with respect to the one presented in [2], which
is defined as the computational latency of the
device i plus the time to transmit the data. It is
worth noting that if using the definition of [2], we
might incur into what we called an "overlapping
problem" : after n inputs a device has to simulta-
neously process two different layers belonging to
two different inferences. For example, as shown
in Figure 2, given a 4-layers CNN and its opti-
mal partitioning on two arbitrary MCUs (orange

Figure 1: Example of a CNN partitioning.

(a) Overlapping

(b) Correct scheduling

Figure 2: Schedule obtained using the two defi-
nitions of the throughput.

and blue, where the orange one is i), assuming
communication time equals to zero, there will
be a certain time in which the orange device has
to simultaneously process the third and the first
layer of two different inferences (see Figure 2a).
Assuming the MCUs can process only one layer
at a time, this will lead to an additional delay in
the run in order to execute sequentially the two
layers. Figure 2b shows instead the scheduling
with no conflicts when throughput is defined us-
ing our definition. The key term to add in the
formulation is the processing time of the "inter-
mediate" layers (layer2 in the above example).

3. Proposed Work
To solve the OP, three algorithms have been
used, namely Full Search (FS), Dichotomic
Search (DS) and Branch-and-Bound (B&B),

3



Executive summary Andrea Santamaria

which are described in the follow and compared
together in Table 1.

3.1. Full Search
This is the basic approach among the others and
consists in exploring all the candidate solutions,
one after the other, by checking at each step
whether the current candidate Pp is feasible and
is better than the best solution found so far. If
so, that candidate becomes the current best so-
lution. This algorithm always guarantees to find
the optimal solution. However, its drawback is
the exponential complexity in the number of lay-
ers, which implies that it is impractical when
dealing with very deep NNs.

3.2. Dichotomic Search
The DS is a recursive algorithm that produces a
bisection tree, which is explored in a depth-first
search (DFS) fashion. It starts from an initial
candidate solution (root node) that assigns all
the layers to the same MCU. New candidate so-
lutions (child nodes) are generated by assigning
(n/2)t consecutive layers in the parent node to a
different device, where n is the number of layers
and t is the depth level of the node. Moreover,
for each new candidate, the DS checks whether
it is feasible and better than the best solution
found so far. If so, it updates the current best
solution with that candidate. With respect to
FS, DS has linear complexity in the number of
layers, but due to the way it generates new child
nodes it does not guarantee to find the optimum.

3.3. Branch-and-Bound
The B&B algorithm is a general search algo-
rithm for finding an optimal solution and relies
on the availability of good heuristics for estimat-
ing the best values ("best" according to the op-
timization function) of all the leaves under the
current branch of the search tree. In order solve
the problem using the B&B we modeled it as a
Constraint Satisfaction Optimization Problems
(CSOP) [3]. In this context, the CNN layers
corresponds to the variables of the CSOP, while
the domain of each variable is the set of avail-
able devices. Moreover, when using the B&B
it is important to define how to compute the f-
value and to choose an admissible heuristic to
estimate the h-value for every feasible assign-
ment of some variables. In our context, we de-

Table 1: Algorithms comparisons.

Full Search Dichotomic Search Branch-and-Bound

Time Complexity O(en) O(n) O(en)

Explored nodes dn βn ≤ d(dn−1)
d−1

Optimality Yes Not guaranteed Yes

cided to apply the B&B to solve only the latency
minimization problem. In particular, the f-value
is computed, when a new candidate solution is
found, by using the formula of the total infer-
ence latency defined in (5), while the h-value is
computed as the sum between the partial layer
computational latency (computed by taking into
account only the variables assigned so far) and
the estimated remaining latency (computed, for
each unassigned variable, as the sum of the min-
imum layer computational latency (1) w.r.t the
devices). It is worth noting that, this heuristic
is admissible because it returns an underestima-
tion of any f-values. In fact, it does not consider
the communication latency for the unassigned
variables. Finally, even though the time com-
plexity of the B&B is exponential in the number
of layers, in practice, it can be significantly re-
duced by the pruning mechanism adopted by the
B&B during the exploration as well as by using
additional heuristics for selecting the next vari-
able and sorting the set of values to be assigned.
By construction, this algorithm guarantees to al-
ways find the optimal solution.

4. Experimental Results
To evaluate the three algorithms, we carried out
a detailed experimental campaign considering
eight CNNs models (whose properties are sum-
marized in Table 2) and ten STM32 MCUs (see
Table 3) characterized by heterogeneous mem-
ory and computational properties.
As for the CNN models, we used three Mo-
bileNets v1 which take as input a 128×128 RGB
image, using different values for the α parame-
ter (0.25, 0.30 and 0.35) to control the width
of the network. YAMNet 256 is a modified ver-
sion of the YAMNet model obtained by taking
the first six convolution blocks of the original
model, while VoxCeleb is a proprietary model
trained on the VoxCeleb dataset and consists
of four convolution blocks (made by a convo-
lution using ReLu non-linearity followed by a
max pooling layer) followed by a separable con-
volution block (made by a separable convolu-

4



Executive summary Andrea Santamaria

Table 2: CNNs used in the experimental campaign.

Model Depth Tot FLASH (KB) Max RAM (KB) Tot MAC (106)

MobileNet v1 025 30 1825.53 262.06 14.4

MobileNet v1 030 30 2366.15 311.32 19.6

MobileNet v1 035 30 2976.80 360.34 26.0

YAMNet 256 13 526.25 396.25 24.4

VoxCeleb 7 926.84 39.75 12.1

KWS CNN 8 270.91 31.21 2.53

KWS DS-CNN 17 155.80 56.25 4.83

Tiny-CNN 5 74.85 11.31 0.81

Table 3: MCUs memory and computing properties.

MCU FLASH (KB) RAM (KB) CPU Freq. (MHz) CpM

STM32H743ZI 2048 1024 480 6

STM32H723ZG 1024 564 550 6

STM32F446RE 512 128 180 9

STM32F401RE 512 96 84 9

STM32F401RB 128 64 84 9

STM32L4R5ZI 2048 640 120 9

STM32L452RE 512 128 80 9

STM32L433RC 256 64 80 9

STM32L412KB 128 40 80 9

STM32G071RB 128 36 64 307

tion followed by a global average pooling and
a dropout layer), and two fully-connected lay-
ers having 128 and 256 output neurons, respec-
tively. Then, we created a small CNN, named
Tiny-CNN and trained on the MNIST dataset,
whose architecture consists in three convolution
blocks (like VoxCeleb’s ones) followed by a fully-
connected layer of 48 output neurons. Finally,
we also considered two models for keyword spot-
ting (CNN and DS-CNN), whose weights and
activations are in float32 format.
The data reported in Table 2 have been obtained
using the X-CUBE-AI tool v 7.1.0.
To handle data communication between parti-
tioned sub-models deployed on different MCUs,
a mesh network topology was assumed and the
UART transmission protocol (baud rate set to
115200 bps, asynchronous mode, one stop bit,
eight data bits and no parity bits) was used.
In the experimental evaluation, both the opti-
mization policies have been used. In particu-
lar, as for the minimization of the inference la-
tency we used all the algorithm described in Sec-
tion 3, while regarding the maximization of the
throughput, we considered only FS and DS.
The obtained results are summarized in Table 4.

5. Porting a Neural Network
model to a real IoT System

The methodology has been also applied to dis-
tribute the 5-layer Tiny-CNN on a real techno-

(a) MobileNet 025 (b) MobileNet 030 (c) MobileNet 035

(d) YAMNet 256 (e) VoxCeleb (f) KWS CNN

(g) KWS DS-CNN (h) Tiny-CNN

Figure 3: FLASH (blue), RAM (orange) and
MACC (green) normalized profiles of the CNNs.

logical scenario comprising two STM32G071RB
MCUs (see Figure 4). The goal of this exper-
iment is to first validate the the CNN place-
ment provided by the Neural Network Split-
ter on physical devices, and second by compar-
ing the total inference latency estimated by our
tool with the one measured when deploying the
model on the IoT system. In particular, the fig-
ures of merit L, T and I reported in Table 5
are the total computational latency (2), the total
communication latency (4) and the total infer-
ence latency (5), respectively. The optimal so-
lution of the minimization problem assigned the
first three layers of the CNN to one MCU and
the last two layers to the other one.
The measured transmission and processing
times are particularly interesting, showing that
the measured transmission time T is almost
equal to the estimated one, whereas the mea-
sured processing time L is 8% smaller than the
estimated one. This is justified by the fact the
used CpM was estimated through another sim-
ilar CNN model, but the CpM is actually NN
architecture dependent.

6. Conclusions
The aim of this work was to introduce the Neu-
ral Network Splitter, a software tool that allows
to automatically partition a given pre-trained
NN model over multiple devices without affect-
ing the model’s architecture or its accuracy. The
partitioning problem has been modeled through

5



Executive summary Andrea Santamaria

Table 4: Summary results of the experimental evaluations (* when an algorithm did not reach optimality).

Model Used MCUs Latency (s) # Splits Throughput (s−1) # Splits FS steps DS steps BB steps

MobileNet v1 025 STM32H743ZI, STM32L4R5ZI 0.268 2 4.034 2 230 236 66

MobileNet v1 030 STM32H743ZI, STM32F401RE 1.839 3 0.544 (↓ 13.5%) 3 230 236 62

MobileNet v1 035 STM32H743ZI, STM32L4R5ZI 0.448 2 2.379 2 230 236 66

YAMNet 256 STM32H743ZI, STM32L4R5ZI 4.331 2 0.278 2 213 100* 73

VoxCeleb STM32L452RE, STM32F446RE 0.684 2 1.492 2 27 52 13

VoxCeleb STM32F446RE, STM32H723ZG 0.208 2 4.955 2 27 52 13

KWS CNN STM32L433RC, STM32L412KB 0.822 3 1.216 (↓ 1%) 3 28 46 17

KWS DS-CNN STM32F401RB, STM32F401RB 2.74 2 0.431 2 217 132 80

Tiny-CNN STM32G071RB, STM32G071RB 4.10 2 0.341 3 25 18 13

Figure 4: CNN placement on a real IoT system.

Table 5: Experimental benchmark results of
Tiny-CNN and two STM32G071RB MCUs.

Case L (s) T (s) I = L+ T (s)

Model 3.88 0.22 4.1

Experimental 3.56 0.25 3.81

a detailed mathematical formulation and solved
using three different algorithms, namely FS, DS
and B&B. To evaluate the proposed methodol-
ogy an exhaustive experimental campaign has
been carried out on several CNN architectures
and heterogeneous MCUs. The obtained results
showed that, among the considered algorithms,
the B&B achieved the optimal solution in the
lowest number of steps in all the experiments.
Concerning FS, it turned out to have limitations
with deeper network architectures since explor-
ing all the possible candidates requires signifi-
cant computational effort and may be also im-
practical. On the other hand, since DS’s com-
plexity is linear in the number of layers, this

algorithm can be an alternative to the FS. How-
ever, its main downside is that the optimality
is not guaranteed due to its searching strategy
which could not explore the whole search space.
As future work possibilities, the power consump-
tion could be included in the constraints as well
as in the objective function. From the algo-
rithmic point of view, DS can be improved by
introducing an adaptive bisection which splits
the current candidate based on the network’s
profiles instead of fixed points. Furthermore,
the B&B can be improved by introducing an
innovative admissible heuristic for selecting the
next layer-device assignment in the throughput
maximization problem. Finally, the last open
point consists in evaluating this methodology on
multi-branches NNs models.

References
[1] Simone Disabato, Manuel Roveri, and Ce-

sare Alippi. Distributed deep convolutional
neural networks for the internet-of-things.
IEEE Transactions on Computers, 2021.

[2] Siqi Wang, Gayathri Ananthanarayanan, Yi-
fan Zeng, Neeraj Goel, Anuj Pathania, and
Tulika Mitra. High-throughput cnn inference
on embedded arm big. little multicore pro-
cessors. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Sys-
tems, 39(10):2254–2267, 2019.

[3] E. Tsang. Foundations of Constraint Sat-
isfaction. Computation in cognitive science.
Academic Press, 1993. ISBN 9780127016108.

6


	Introduction
	Problem Definition and Assumptions
	Mathematical Formulation
	Improvement of the Waiting Time Definition

	Proposed Work
	Full Search
	Dichotomic Search
	Branch-and-Bound

	Experimental Results
	Porting a Neural Network model to a real IoT System
	Conclusions

