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A B S T R A C T

Event-based cameras are bio-inspired sensors that emulate the functioning of
biological retinas. Unlike traditional cameras, which generate dense frames at
a constant and predefined rate, these sensors, similarly to the photoreceptors
in the retina, output data only when a change in brightness is detected. The re-
sult is a sensor able to sparsely and incrementally encode visual changes with
microseconds resolution, high dynamic range, and minimum requirements
for power consumption and bandwidth. Nevertheless, due to their fundamen-
tally novel way of recording appearance, these sensors cannot be directly used
with typical computer vision systems, which must be redesigned to work
with events. That is the case with deep neural networks for vision, which ex-
press their full potential when hierarchical representations can be computed
from input data, such as when dealing with images. However, learning to
achieve this level of abstraction efficiently and effectively from events is far
more difficult than doing the same with images. In fact, while rich visual
data is directly accessible from a single frame, reconstructing appearance
from events requires additional computation and temporal reasoning. Visual
information is indeed spread temporally through incremental and sparse
updates, making learning effective network representations harder.

This thesis addresses this challenge by focusing on three aspects of design-
ing deep neural networks for event-based vision. First, we look at how to
efficiently compute hidden neural representations by preserving event-based
cameras’ properties during computation. We accomplish this by designing a
framework for converting deep neural networks into systems with identical
expressiveness but capable of performing asynchronous and incremental
processing, thus retaining the event camera’s asynchronous and data-driven
nature. Then, we focus on performance and study how to learn effective
input representations for a given task. We propose a recurrent mechanism
that automatically learns to interface with any convolutional network by
sparsely and incrementally building a frame-like representation from asyn-
chronous events. Finally, we focus on the challenging task of training neural
networks to operate effectively on a real-world event-based camera when
the only source of training supervision comes from simulation. We tackle
the problem from a domain adaptation perspective by learning to extract
domain-invariant intermediate representations. This learning strategy enables
the network to attain performance comparable to that potentially achieved by
directly learning from real annotated samples, yet without performing any
finetuning on a real device. Throughout this thesis, we explore the importance
of representations in event-based networks, at both the input and hidden
layers, and show that by focusing on these aspects, considerable gains can be
achieved toward more effective and efficient processing.
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1 I N T R O D U C T I O N

Vision is arguably the most developed sense in primates. Through a complex
network of receptors, neurons, and other specialized cells, the eyes and
the brain interact almost simultaneously in the intricate physical process of
viewing something. The eye first collects light, projects it to a membrane
of receptors employing a system of adjustable lenses, converts it into a
sequence of electrical signals, and finally transmits it to a system of complex
neural pathways connecting the eye to the visual cortex. Roughly 50% of the
cerebral cortex in macaque and 20-30% in humans is solely devoted to visual
understanding and processing [9, 10], clearly showing both its intricacy and
importance for our everyday life.

However, despite hundreds of years of research and investigation, the
visual system is still far from being completely understood. The first studies
on visual feature detectors date back to 1959 to the seminal works of Hubel
and Wiesel [11–13], who discovered the presence of orientation-selective
responses in the primary visual cortex. Based on these discoveries, several
visual processing models have later been proposed [14, 15]. All these models
rely on the core idea that high-level vision capabilities trace back to a cascade
of hierarchically organized layers of cells providing progressively structured
signals.

Modern computer vision relies on these same principles. However, de-
spite recent breakthroughs in artificial intelligence, image processing, and
micro-electronics, our brain still processes and interprets information in a
far more efficient manner than computers do. Exploiting both analog and
digital communication through trillions of synapses, it reaches an estimated
processing speed of ≈ 1016 floating point operations per second (FLOPs),
which is comparable to that of some of the fastest supercomputers ever built
[16] (≈ 5 · 1017 FLOPs of the Fugaku, or ≈ 1016 FLOPs of the less powerful
Marconi-100 [17]). However, while the brain consumes only ≈ 20 W of power,
of which only a fraction is devoted to vision and its communication [18],
these supercomputers require much more energy (1-30 · 106 W), making the
brain far more energy-efficient than supercomputers (≈ 1015 FLOPs W−1

vs. ≈ 1010 FLOPs W−1) [16]. It is thus apparent that we need to take more
and more inspiration from neuro-biological systems if we aspire to make
machines achieve the same levels of efficiency as our brains.

1



2 motivation: efficient and effective neural representations

1.1 neuromorphic vision devices

Neuro-biological systems process information in an asynchronous, sparse,
and energy-efficient manner, as opposed to computers, which employ syn-
chronized logics, high-speed clock rates, and energy-demanding computation.
The difference between biological retinas and traditional vision devices offer
a clear illustration of this disparity. Conventional cameras gather visual infor-
mation by taking full-frame pictures collecting light at a constant and preset
rate. While these images closely resemble what we picture in our minds,
they typically contain highly redundant information, unlike neural signals.
Indeed, all sensor’s pixels are synchronously read to form the final image
regardless of whether something has changed since the last image has been
taken.

This way of capturing visual information deviates from biological retinas,
which leverage a much more efficient operating principle. Light hitting the
retina initiates a sequence of chemical and electrical processes triggering
impulses that ultimately reach the vision centers in the brain. Retinal ganglion
cells collect neural signals from photoreceptors, altering their electrical charge
and causing them to fire output signals after reaching a certain potential
threshold. The same paradigm is adopted in the following processing layers
of the visual cortex, which trigger neural impulses only when enough relevant
visual information has accumulated. This procedure results in an entirely
asynchronous and energy-efficient system capable of performing computation
only when required.

Inspired by these mechanisms, neuromorphic vision devices, also known
as event-based cameras, are vision sensors that attempt to emulate the func-
tioning of biological retinas. An array of independent pixels generates an
output signal, i.e., an event, anytime the local brightness level changes by a
given threshold, simulating a simplified model of the retina’s photosensitive
membrane. Like in a biological vision system, information is produced asyn-
chronously and only when needed, resulting in a very efficient device with
many advantages over traditional ones. Many of the operating principles of
these artificial retinas are shared with biological ones, giving us hope that
we will soon be able to create visual systems with the same precision and
efficiency as biological ones.

1.2 motivation: efficient and effective neural
representations for asynchronous data

The reason for the success of modern computer vision systems resides in
their ability to learn to reason directly from experience, without any prior
knowledge on the task. Inspired by early neural computation models, many
Machine Learning systems accomplish this by extracting meaningful features
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and combining them in complex and general patterns through a hierarchy
of increasingly sophisticated representations. Deep neural networks, which
are nowadays the beating heart of most vision systems, are capable of nat-
urally extracting this hierarchy as they are organized on several processing
layers that progressively refine information. Thanks to ad-hoc training algo-
rithms, these layers can be jointly trained to extract effective intermediate
representations that make even the most difficult visual tasks simple to solve.

How well such artificial systems perform on a particular task is often
linked to how rich, informative, and general their internal representations
are. However, the paradigm used to extract such representations is specifi-
cally designed to operate on dense visual encodings. As a result, learning to
extract effective representations from the dense images acquired by standard
cameras is remarkably easier than performing the same from the sparse and
asynchronous output produced by event-based cameras. Indeed, while a sin-
gle image directly conveys rich visual data, the same appearance information
needs to be reconstructed from events through temporal reasoning, as it is
spread across the sequence of asynchronous and incremental updates, mak-
ing the task of learning such representations far more challenging. Designing
novel mechanisms to extract effective representations and new computing
paradigms capable of exploiting the asynchronous nature of events is thereby
critical for unlocking event-based cameras’ potential in modern computer
vision architectures.

Spiking Neural Networks, a type of artificial neural network that mim-
ics both the learning and dynamics of biological neurons, are appealing
in event-based vision due to their energy efficiency and asynchronous pro-
cessing paradigm. However, their complex dynamic makes learning with
these architectures very challenging to accomplish, limiting their usage in
complex visual tasks. As an alternative, and thanks to the success of deep
learning in frame-based computer vision, researchers have recently started
exploring the potentiality of deep neural networks, such as the representation
power previously discussed, even in event-based vision. They are, however,
less efficient than spiking networks and typically designed to process syn-
chronous and dense data streams, making it difficult to exploit their ability
to learn when asynchronous data is employed. The tradeoff between these
two solutions, combined with the almost complementary benefits they pro-
vide, begs the question of whether it is possible to draw inspiration from
the asynchronous and incremental processing of spiking networks to make
deep neural network representations more suited at processing events. This
research direction raises a number of questions that have yet to be answered.
In particular, is it possible to exploit deep neural networks at their full potential
while still preserving the sparse and event-driven paradigm of event-based cameras?
Can these neural networks be trained to extract effective representations even from
such a sparse visual encoding? And finally, can these representations be trained to
guarantee good performance even when target conditions deviate from the data used
during training?
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1.3 outline and main contributions

This thesis describes our effort to provide an answer to the previous ques-
tions. We develop a framework based on a hybrid approach for converting
traditional convolutional neural networks into event-based networks capa-
ble of asynchronous computation (Chapter 3). We propose a recurrent layer
that maximizes task performance by learning to extract a task-specific event
representation incrementally, driven by incoming events (Chapter 4). Finally,
we demonstrate how domain adaptation techniques can be used to achieve
good performance on real event-based data even when training is performed
solely on simulated samples (Chapter 5). These techniques enable to train
with supervision on a set of samples from a different distribution (i.e., domain)
than that provided by the real camera while still attaining high performance
at deployment time. We focus once again on representations and show that
when these are domain-invariant, generalization to real-world even cameras
improves significantly.

The thesis is structured as follows:

• Chapter 2 provides a general overview of the functioning of event-based
cameras and their advantages over traditional vision devices. Recent
advances in deep learning architectures for event-based processing
are also discussed, focusing on event representations and processing
approaches.

• Chapter 3 addresses the problem of combining event-driven compu-
tation with traditional convolutional neural networks. We develop a
framework for building fully convolutional neural networks that effi-
ciently handle events. We accomplish this by reformulating the tradi-
tional convolution and max-pooling operations. Thanks to an additional
internal memory of previously extracted representations, these layers
perform incremental computation sparsely, updating their internal state
in an event-driven manner. We showcase these layers on the object de-
tection task by implementing an event-based version of the YOLO [19]
detection network.

The chapter is based on [1], published at the Second International Workshop
on Event-based Vision and Smart Cameras, held at the 2019 Conference on
Computer Vision and Pattern Recognition (CVPR19).

• Chapter 4 presents a novel representation for event-based data that
enables end-to-end learning of task-specific event representations. The
proposed MatrixLSTM is a grid of LSTM [20] cells that process events
as soon as they arrive by incrementally building a two-dimensional
representation. This encoding can be attached to any state-of-the-art
frame-based architecture for interfacing optimally with events. We
show that MatrixLSTM can provide powerful representations in several
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tasks, including object recognition, optical flow prediction, and object
detection.

The chapter is based on [2], published at the 2020 European Conference on
Computer Vision (ECCV20).

• Chapter 5 addresses the scenario of training deep event-based neural
networks when the only source of annotated event data comes from
simulation. Event-based cameras have been commercialized only very
recently [21] and remain a costly prototype sensor if compared to
standard cameras, limiting the availability of large-scale datasets and
making simulation a viable option for training deep neural networks.
However, since simulation does not perfectly match a real event camera,
networks trained solely on simulated events typically underperform
when deployed on an actual device. Our research shows that this issue
can be solved by repurposing standard domain adaptation techniques to
the event-based paradigm. We propose DA4Event, a general procedure
for training event-based neural networks on simulated data with minor
performance loss. We study how the use of simulated data during
training affects different event representations and how DA4Event
can help in reducing performance degradation on object recognition
and semantic segmentation tasks. We further extend the research by
studying the more challenging scenario of simulating events from
synthetic renderings. As datasets enabling this type of analysis are
still lacking in the field, we develop N-ROD, a novel dataset obtained
by extending the popular RGB-D Object Dataset [22], to foster future
research on these topics.

The chapter is based on [3] and [4]. The first is published at the IEEE Robotics
and Automation Letters (RA-L) and presented at the 2021 International Con-
ference on Intelligent Robots and Systems (IROS21). The second is published
at the Third International Workshop on Event-based Vision, held at the 2021
Conference on Computer Vision and Pattern Recognition (CVPR21).

• Chapter 6 summarizes the work carried out during the thesis and
suggests possible future directions.





2 E V E N T- B A S E D C A M E R A S I N D E E P
L E A R N I N G V I S I O N

This chapter introduces the working principles of event-based cameras and
their application in deep learning architectures for computer vision. Event-
based cameras are described in the first half of the chapter, along with a
discussion of their benefits over traditional vision devices and the fundamen-
tal differences between currently available models. The second part provides
an overview of recent uses of event-based cameras in deep learning appli-
cations, with particular emphasis on event-based representations. Indeed,
these constitute alternative solutions to the problems discussed in this thesis
and the main elements on which we build upon. We refer the readers to the
papers of Posch et al. [23] and Delbruck [24] for an in-depth overview of
neuromorphic vision devices and to the survey of Gallego et al. [25] for a
broader overview of recent event-camera models and their use in computer
vision tasks.

2.1 silicon retinas

The retina, a complex, multilayered neural network located at the rear hemi-
sphere of the eye bulb, is the foundation of every biological visual system.
It is composed of specialized cells and receptors that convert visual stimuli
into electrical signals. Pigment molecules in the retina’s innermost membrane
layer absorb light as it travels through the semi-transparent layers of neurons
that compose the retina epithelium. These photopigment cells are sensitive
to different wavelengths of visible light, giving humans the ability to per-
ceive primary colors. When light strikes these pigment molecules, chemical
changes occur that modify the membrane potential of subsequent photorecep-
tor cells, commonly known as cones and rods, located in the inner synaptic
layer. On/off bipolar cells connect these receptors to ganglion cells located
in the outer synaptic layer, which react to visual stimuli by sending action
potentials down the optic nerve. A schematic of the human retina is provided
in Figure 2.1 on the following page.

Ganglion photoreceptors cleverly encode spatio-temporal visual informa-
tion into action potential patterns known as spike-trains. These signals do
not directly encode light or color intensity, contrary to what we picture in
our minds, but instead they are correlated with movement and changes in
brightness. In particular, as the magnitude of brightness changes increase, the
rate of spike-trains produced by ganglion cells also increases, while it settles

7
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Bipolar Cells
Pigment Epithelium

Figure 2.1: Cross section of the human eye’s retina. The light striking the retina
travels through all of the semi-transparent neural layers before reaching
and activating the innermost rods and cones. These photoreceptors
initiate communication back toward the ganglion cells and eventually
through the optic nerve. Image adapted from Sakurra, Adobe Stock.

when no movement or brightness variations are detected. Spike-trains are
then converted back into continuous signals in the first layers of the visual
cortex by dendritic integration in postsynaptic terminals, where high-level
visual understanding happens. This mechanism is complemented by other
highly developed biological adaptive filtering and sampling processes, which
contribute to making the spike-train encoding scheme incredibly efficient.
These include, among many others [26], spatiotemporal filters reducing re-
dundancy and noise and a rectification mechanism limiting the spike-firing
rates of bipolar cells.

This highly efficient biological transmission protocol makes the vision
system very hard to beat by modern digital systems. As reported by Posch et
al. [23] and Echeverri [27], in order to match the human retina characteristics
in terms of dynamic range (over 100 dB), spatial (∼ 92 million brightness-
sensitive rod cells and ∼ 4.6 million color-sensitive cone cells [28]) and
temporal (∼ 24 fps [27]) resolution, a typical image sensor sampling at the
Nyquist frequency1 would have to transmit more than 20 Gb/s. The optic
nerve, on the other hand, transports only around 20 Mb/s to the visual cortex
by encoding two bits of information each spike, three orders of magnitude
less.

1 In signal processing, the theorem of Nyquist-Shannon defines the Nyquist frequency as the
minimum frequency needed to sample a continuous signal without losing information. In
particular, the theorem states that the minimum sampling frequency necessary to reconstruct
the original analog signal must be greater than double its maximum frequency.



2.1 silicon retinas 9

The efficiency of biological neural systems inspired researchers to design
new types of architectures and algorithms that, by mimicking neuro-biological
processes, could benefit from their efficient computation and communication.
This research area has yielded a number of interesting and successful out-
comes [29–33], with silicon retinas [34, 35] being the most mature technology.
The following sections will cover the functioning of neuromorphic retinas
and how information is processed and conveyed in these devices.

2.1.1 Address-Event Representation

What makes the biological vision system very efficient is, to a large extent,
its highly evolved communication system. Reproducing similar mechanisms
in the design of neuromorphic devices is an essential step in the journey
toward replicating their performance. The brain is composed of millions of
neural cells interconnected with point-to-point connections arranged in a
three-dimensional space. Due to wiring complexity and space constraints,
however, this configuration is regrettably not practical to implement with
current Very Large Scale Integration (VLSI) technologies. Nevertheless, as
discussed earlier, neurons are not constantly active, and they generate spike-
trains at a far slower rate than the bandwidth of existing digital buses.
Bio-inspired units in neuromorphic devices (such as asynchronous neurons
and photoreceptors) behave similarly, typically generating spikes at only
10 − 1000 Hz [23]. Neuromorphic devices exploit this behavior and replace
explicit point-to-point connections with just a few high-speed physical buses,
shared across all units, that are time-multiplexed to enable multiple units to
interact simultaneously [23].

The most widespread protocol following this operating principle for intra-
chip and inter-chip communication in neuromorphic devices is the Address-
Event Representation (AER). The AER was developed 30 years ago by Caltech
institute [36, 37] as an asynchronous communication mechanism, and it is
nowadays used in many retinomorphic vision sensors. Each unit (e.g., a
neuron or a pixel) is given a unique address that identifies the source of the
signal. Whenever a unit outputs a signal, an event is generated consisting of its
unique address and any extra information produced. As time is intrinsically
stored in the timing of the events, it is usually not included within the packets,
and it is only added when processing takes place offline or in a synchronous
device, such as FPGAs or traditional digital processors [23].

The AER protocol suits neuromorphic computation very well, as sensing
and processing units typically interact through asynchronous computation.
An example is event-based cameras, where the protocol is implemented by
assigning each pixel to an address encoding its spatial position.
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2.1.2 Neuromorphic Imaging Devices

Primarily aimed at reproducing biological models, the earliest neuromorphic
imaging devices were employed as a way of testing and verifying neuro-
biological theories [23]. The first silicon retina is due to Mahowald and
Mead [38], who implemented a VLSI architecture featuring silicon bipolar
and photoreceptors cells that react to light, generating output spike-trains
encoded using the AER protocol. This design was later improved by Zaghloul
and Boahen [39] [40], who implemented more realistic models of the retina,
even including high-level visual processing layers. Recent designs are now
increasingly prioritizing performance over faithfully reproducing biological
models. In general, they can be categorized by the mechanism used to encode
visual stimuli [41]. Although several prototypes have been proposed [42],
here we focus on the most popular ones, distinguishing between those that
only detect brightness changes (Change Detection (CD) devices) and those
that additionally encode grayscale, or Exposure Measurement (EM), readings
alongside changes.

change detection (CD) devices. In the same way as the neural layers
of the biological retina create a spike whenever they sense a change in bright-
ness, pixels in change detection devices generate a signal, i.e., an event, in
response to changes in light. The sensor is composed of a matrix of pixels that
independently track the brightness level hitting their photodiodes. Whenever
the logarithmic intensity L = log(I) at pixel location (xi, yi) changes of a
quantity above or below a predefined logarithmic threshold C > 0, an event

ei = {xi, yi, ti, pi} (2.1)

is generated, specifying the position (xi, yi) of the pixel, the time instant
ti the change has been detected, and a polarity bit pi ∈ {−1, 1} encoding
whether the intensity decreased or increased. Two consecutive events ei and
ej generated from the same pixel location (x, y) safisfy the following equation
[25]:

∆L(ei, ej) = L(x, y, ti)− L(x, y, tj) = pi · C, with ∆tij = ti − tj > 0, (2.2)

where ∆tij is the temporal difference between the two events and L is the
logarithmic brightness intensity. The output of the sensor E = {ei | ti ≥
tj, ∀j < i} is thus an ordered sequence of asynchronous events describing
the dynamics of what is changing or moving in the scene. The rate of events
generated by CD devices is data-driven, just like the spike-train frequency
in photoreceptors of the retina. That is, many events are produced when
capturing a scene involving fast movements, while little to no events are
generated in a static one.

The Dynamic Vision Sensor (DVS) falls in the class of CD devices. It was first
introduced by Lichtsteiner et al. [21] and then later improved by Serrano-
Gotarredona and Linares-Barranco [43], who increased the sensitivity of the
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Figure 2.2: A typical DVS sensor compared to a schematized structure of the retina.
(left) Photoreceptors, bipolar and ganglion cells are implemented in
hardware with dedicated circuits to replicate the retina’s functioning.
(top-right) A log-intensity signal Vlog at a particular DVS’s pixel and the
generated output events. The change in brightness at each pixel location
is monitored through Vdiff. A new event is produced whenever Vdiff
reaches a preset positive or negative theshold C. (bottom-right) Positive
and negative events generated by an event-camera moved in from of a
person. Figure taken from Posch et al. [23]. Copyright ©2014 IEEE.

pixels and reduced their size at the expense of higher power consumption. A
schematic of the sensor, taken from Posch et al. [23], is provided in Figure 2.2.
An amplified photodiode generates a voltage signal Vlog proportional to the
light’s log intensity. This information is amplified to Vdiff according to the
ratio C1/C2 and read by two comparators that generate an output event
whenever Vdiff exceeds the predefined thresholds. In that case, a reset switch
is activated, which pulls the gain amplifier’s output back to an initial voltage
V0 to enable the reading of a new intensity value [21, 44]. Other variants
of the sensor exist, like the sensor developed by Berner and Delbruck [45]
which is sensitive to color variations, and its extension, named cDVS [46], that
combines log-intensity and color changes detection, thus producing events
with color information. The industry is actively pushing the pixel resolution
of DVS sensor, with the latest sensor from Prophesee [34] and Samsung [35]
now reaching 1Mpx resolution.

change detection and exposure measurement (EM) devices. Neu-
robiological studies revealed the existence of two primary pathways in the
primary visual cortex [47, 48], one that quickly responds to motion and
luminance changes, and a slower one sensitive to textures and chromatic
modulation 2. Event-based cameras such as the Dynamic Vision Sensor (DVS),

2 The retina is composed of three distinct types of ganglion cells known as magno, parvo and
konio cells, which give rise to three homonymous pathways. The magno and parvo pathways
are those discussed in the text, with magno cells producing low-latency motion-sensitive
responses and parvo cells processing details, textures, and colors. The third pathway, which
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Figure 2.3: Functioning of an Asynchronous Time Based Image Sensor. Whenever
the DVS detects a change in brightness, an exposure’s measurement
at that pixel location is triggered. The ATIS sensor produces two types
of events, visualized on the right, which encode change and exposure
information. Figure taken from Posch et al. [23]. Copyright ©2014 IEEE.

being low latency and sensitive to dynamic information, clearly mimic the
first processing pathways. In contrast, conventional frame-based cameras
can be functionally attributed to the second means of visual processing, as
they convey slow but texture-rich information. Inspired by these studies,
more advanced event-based camera designs propose combining brightness
change detection with the direct measurement of pixels’ intensity values,
thus exploiting the benefits of both vision paradigms and more faithfully
reproducing information available in the primary visual cortex.

The Asynchronous Time Based Image Sensor (ATIS) developed by Posch et
al. [47] is the first device to provide this sort of combined visual information.
Besides traditional events encoding brightness changes (CD events), this
sensor generates additional events encoding exposure measurements (EM

events) analogous to that conveyed by grayscale images. However, instead of
synchronously sensing intensity values as in traditional images, these sensors
still exploit an asynchronous behavior to encode pixel brightness values
only when these change. This sensing paradigm is realized by extending
a traditional DVS pixel with an additional exposure measurement circuit,
which is triggered by the DVS, independently and asynchronously, whenever
it detects a change. When this happens, two consecutive AER events are
generated, encoding the absolute value of the pixel as the relative time
difference between the two events, measured as the time a photodiode takes to
integrate between two threshold values. A schematic is provided in Figure 2.3.

Combining the asynchronous approach of the DVS sensor with intensity
readouts, ATIS sensors are capable of very high video compression and tem-
poral resolution. However, since the time encoding is inversely proportional
to the intensity, dark objects may produce artifacts, as the intensity readout
could be interrupted by new events. Moreover, the size of the pixel limits the

comes from konio cells, has far fewer cells than the other two and, as a result, its physiological
response has yet to be fully characterized [48].
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fill factor3 in ATIS sensors, as they effectively combine two sub-pixels for CD

and EM measurements.
An alternative hybrid approach is that implemented in the Dynamic and

Active pixel Vision Sensor (DAVIS) developed by Berner et al. [49]. Contrary to
the ATIS, which only provides asynchronous information, the DAVIS sensor
combines synchronous frame-based intensity readings with the asynchronous
events of a DVS. The same pixel is used both to produce full-frame grayscale
pictures with traditional global or rolling shutter mechanisms and to detect
event-based illumination changes asynchronously. Since only a small readout
circuit is required to extend a DVS pixel to operate in both modalities, increas-
ing the pixel size by only 5% [23], the fill factor is not harmed as much as in
an ATIS device. The latest DAVIS346 model [25] features a 346× 260 resolution
and a variant named CDAVIS [50] extends the sensor to output RGBW frames
at VGA resolution as well as asynchronous monochrome QVGA events. A
similar design is also proposed in the SDAVIS192 [51], which integrates a
DAVIS sensor with a proper color filter array.

2.1.3 Advantages of Event-Based Cameras

Thanks to their unconventional way of capturing the scene, event-based
cameras possess a number of benefits over traditional imaging devices [25].
These benefits, which originate from the event-based camera functioning, as
depicted in Figure 2.4 on the following page, are detailed in the following:

• Low latency and temporal resolution: pixels in DVS sensors implement a
simple yet very fast analog circuitry that enables detection of brightness
changes at microsecond temporal resolution. As every pixel in the
sensor operates asynchronously and independently, brightness changes
(i.e., events) are transmitted as they occur, with minimum delay. This
is different from standard cameras, where pixels must wait a global
exposure time before reading. As a result, event-based cameras can
capture rapid movements without motion blur, a common problem
with frame-based devices.

• High Dynamic Range (HDR): the exposure time in an event-based camera
is not fixed everywhere, but each pixel is instead free to operate at
its own exposure. As a consequence, event cameras exhibit a dynamic
range over 120 dB, which is well above the 60 dB of traditional cam-
eras. Moreover, since event-based cameras sense light at a logarithmic
scale, their response to light is consistent over a wide range of intensi-
ties. These two characteristics give event-based cameras an edge over
standard devices when operating in unfavorable lighting conditions.

3 The fill factor of an imaging sensor is the percentage of its total surface that is sensitive to
light. Transistors, capacitors, wiring, and registers reduce this area, affecting the sensitivity of
the sensor to light, and thus its ability to sense in low light conditions.
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Figure 2.4: Comparison between a standard camera’s output with that of an event-
based camera capturing a rotating disk. While a standard camera cap-
tures full-frame pictures at predefined rates, an event camera only en-
codes changes in the scene. As a result, the background of the disk is
not captured since it does not change intensity, thus highly reducing
information redundancy. Similarly, when the disk stops, no event is
generated. Finally, the high temporal resolution eliminates motion blur
effects, which instead affect standard devices in the presence of high-
speed motion. Figure re-created from Kim [52] and inspired by Mueggler
et al. [53].

• Low power consumption: as event-cameras are data-driven, power is only
consumed when something changes. As a result, power consumption
is in the order of 100 mW in most cameras and can reach even 10µW
in some prototypes. This is a very desirable property, especially in
wearable devices and mobile robots.

2.2 deep learning approaches to event-cameras

Drawing inspiration from their functioning, event-based cameras share sev-
eral benefits of biological retinas, which give promise in many situations
where standard devices are limited in their capabilities. Fast motions, like in
drones or moving cars, and abrupt brightness changes, such as when exiting
a dark tunnel or driving with frontal sunlight, are all challenging condi-
tions in which they excel. Taking advantage of these strengths, researchers
have started creating new algorithms to tackle traditional computer vision
problems under this new way of sensing the world. These algorithms range
from designs that focus on exploiting and maintaining event-camera prop-
erties during computation, often using specialized hardware to accomplish
asynchronous and minimum delay computing, to algorithms that use events
in combination with standard devices to boost the performance of existing
computer vision algorithms.
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Despite event-based cameras advantages, developing algorithms that effi-
ciently interface with event measurements is not straightforward. Events are
asynchronous and spatially sparse, while traditional vision algorithms often
require dense and information-rich representations to operate effectively.
Moreover, event measurements do not only depend on the scene brightness
but also on the relative movement between the camera and the scene, which
poses new challenges and opportunities in algorithm designs.

Several hand-engineered methods, designed ad-hoc for event-based pro-
cessing, have shown great performance on a number of computer vision tasks,
such as optical flow prediction [54–56], depth estimation [57, 58], pose estima-
tion [59], and many others. These solutions completely rethink the problem
under the paradigm shift imposed by event-based cameras. On the contrary,
Deep Learning (DL) approaches have shown in the past to provide a high
level of performance on several traditional computer vision tasks without the
need of explicitly modeling the problem. Artificial Neural Networks (ANNs)
are often easier to adapt than conventional algorithms, and they have proven
to work well when applied to similar visual encodings, such as point clouds
[60, 61].

Although the lack of large annotated datasets is still hindering their true
potential in the field, DL approaches are becoming very popular in the event-
based research community. This section provides a general overview of recent
applications of DL approaches to event-based cameras, focusing on the aspect
relevant to this thesis. As a thorough discussion of DL techniques is out of the
scope of this thesis, we refer the reader to the comprehensive Deep Learning
textbook of Goodfellow et al. [62] for details on the DL tools here discussed.
Moreover, a broader overview of event cameras applications, covering the full
spectrum of computer vision problems, is also provided by Gallego et al. [25]
in their recent survey.

2.2.1 Processing Paradigms

Events produced by neuromorphic cameras convey very little information,
as, if considered alone, they only signal a change of brightness at a particular
location in space and time. Computer vision algorithms must rely on some
aggregation mechanism to correlate events that occurred in a spatio-temporal
neighborhood to perform any meaningful prediction. In this respect, two
general paradigms for event processing have emerged in the research com-
munity, which differentiate depending on how events are consumed during
computation.

event-by-event computation. This approach processes each event as it
arrives, incrementally and asynchronously updating the algorithm’s output,
thus achieving minimum reaction times. These algorithms often rely on an
internal state that is updated upon the event’s arrival, which constitutes the
algorithm’s belief about the content of the scene and its evolution in time.
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Spiking Neural Networks (SNNs) [63] are the leading approach when it
comes to neural systems for asynchronous spike-based computation. Indeed,
being inspired by the functioning of biological neural networks, they naturally
fit event-based processing. They are composed of independent neuron-like
units that asynchronously react to incoming spikes events by aggregating
spikes coming from other neurons and firing themself whenever enough
relevant information is accumulated. The neurons’ membrane potential con-
stitutes the SNN’s internal memory, which gets updated each time an event
arrives, asynchronously, in an event-by-event manner. They have been applied
to event-based processing in several tasks, such as edge detection [64, 65],
object classification [66, 67] and hand-gestures recognition [68]. Given their
origin, they are typically trained with unsupervised biologically inspired
learning rules [69, 70], but they often achieve better performance when hy-
brid approaches leveraging traditional gradient-based learning methods are
applied. Several works [67, 71–73] use standard ANNs as a proxy for learning
their synaptic weights and overcoming their non-differentiability, enabling
the training of even complex, multilayered architectures.

Another typical class of event-by-event algorithms relies on filtering al-
gorithms for estimating some system’s unknowns. They are traditionally
designed to operate on an incomplete and potentially noisy set of obser-
vations, and they commonly incorporate the notion of a state, which is
continuously updated as new observations become available. These two
characteristics make them particularly suited for event-based asynchronous
processing. For these reasons, a number of event-based algorithms based on
filters have been proposed over the years, whether deterministic or stochastic.
Typical applications include Simultaneous Localisation and Mapping (SLAM)
algorithms [74–76], where filters represent the standard even in conventional
computer vision approaches, noise filtering mechanisms [77, 78], as well as
image and video reconstruction algorithms [79, 80] converting event camera
output to grayscales.

Deterministic filters have also been proposed to implement asynchronous
convolution for event-based artificial neural networks [71, 81–83] and feature
extraction in general [84, 85]. They exploit the sparse encoding provided
by event cameras to implement fast operations at low computational cost,
processing only local neighborhoods around incoming events rather than the
entire image. Scheerlinck et al. [81] formulate the problem as a continuous-
time filter which is evaluated asynchronously, at discrete time instances, by
solving associated ordinary differential equations. In this thesis (see Chap-
ter 3 and the related paper [1]), we propose a recurrent formulation of the
convolution and max-pooling operations that leverage an internal state to
asynchronously and locally compute convolutions in ReLU [86] based deep
neural networks. The approach was later extended by Messikommer et al. [87]
who focus on a different class of convolutional networks and propose a pro-
cedure agnostic of the input event representation.
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batch-based computation. This second approach waits for a batch of
events to arrive and process them all simultaneously, sacrificing response
time for performance. When processing the event stream offline, a sliding
window approach is commonly used to construct the batch by either fixing the
number of events or the time period of each window. As in the event-by-event
approach, an internal state may also be used to extend the context beyond the
batch and integrate information from previous computations. Batch-based
approaches usually convert the input stream into structured representations
providing richer information than single events, as they enable events to be
correlated in space and time. Some pre-processing mechanisms still preserve
an asynchronous and sparse encoding [88–91], while others prefer to convert
the event stream into a densified representation [92–94].

Several batch-based algorithms leverage the concept of time surface [84, 85],
a dense representation extracting local spatio-temporal motion footprints
from each event. While these technically fall under the event-by-event ap-
proaches, as they can be computed asynchronously leveraging a memory
mechanism, in practice, they are often used within batch-based methods that
accumulate and process them to accomplish several computer vision tasks.
Applications of time surfaces include 3D stereo reconstruction [95, 96], stereo
depth estimation [97], SLAM [98], corner detection and tracking [99–101] as
well as object classification [84, 85].

Few batch-based approaches avoid creating densified intermediate repre-
sentations to preserve event cameras’ benefits given by their sparse encoding.
Methods based on graphs interpret events as vertices of a graph intercon-
nected in local spatio-temporal neighborhoods. Graphs have recently been
used in motion segmentation algorithms [88], and graph neural networks
have successfully been applied in object classification [89, 90] and action
recognition [90, 91] tasks. A similar approach interprets event streams as 3D
point clouds where the depth dimension is replaced with the temporal one.
Deep learning networks, such as PointNet [61] and PointNet++ [60], have
shown good performance when applied to small temporal windows of events
in object recognition and semantic segmentation [102], as well as gesture
recognition [103] tasks.

Far more popular are methods that convert the event stream into dense
representations commonly known as event frames. These representations
resemble conventional frames and are thus easy to integrate into conventional
computer vision pipelines. DL approaches based on these grid-like encodings
have been applied to a number of tasks, including object classification [2, 92]
and detection [104], semantic segmentation [105], depth and optical flow [54–
56] estimation, and image reconstruction [106–108].

Grid-like event representations are discussed in detail in the next section,
as they constitute the basis of some of the works presented in this thesis. We
present a novel bio-inspired representation in Chapter 3, an end-to-end train-
able layer for learning to extract an event-frame optimized for a given task in
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Table 2.1: Comparison of grid-like event representations used in deep learning
frameworks. H and W denote the representation’s spatial dimensions
while B the number of optional temporal bins. The Time and Polarity
columns indicate how the corresponding event feature is encoded: None if
the value is not included, Chan if it is represented as a channel dimension,
and Feat if it is encoded in the pixel value. The column Motion Invariant
reports if either speed or direction invariant processing is performed, with
details discussed in the text. Finally, the Matrix-LSTM [2] representation
is discussed extensively in Chapter 4 on page 71. Table adapted from Gehrig
et al. [92].

Event Representation Dimensions Time Polarity
Motion Voxel

Learned Characteristics
Invariant Based

Event Count [109] H × W × 2 None Chan Number of events

BII [110] H × W None Feat Sum of event polarities

SAE [111] H × W × 2 Feat Chan Most recent timestamp

FSAE [100] H × W × 2 Feat Chan Filtered most recent timestamp

DiST [112] H × W × 2 Feat Chan ✓ Discounted sorted timestamp

IETS [113] H × W × 2 Feat Chan Edge-only filtered timestamps

Motion-comp. counts [114] H × W None None ✓ Motion-compensated event counts

Motion-comp. time [114] H × W Feat None ✓ Avg. of Motion-compensated time

Linear TS [41] H × W Feat Feat Linearly decaying time

Exp. TS, HOTS [41, 84] H × W Feat Feat Exp. decaying time

Accum. TS [41] H × W Feat Feat Exp. decaying time with accum.

HATS [85] H × W × 2 Feat Chan Histogram of avg. time surfaces

Motion-corrected [115] H × W × 2 None Chan ✓ Motion-corrected event counts

Voxel-Grid Image [55] H × W × B Feat Feat ✓ Weighted sum of event polarities

Multi-Channel BII [106] H × W × B Feat Feat ✓ Sum of event polarities

TBR [93] H × W None None Number of events

AMAE [94] H × W Feat None ✓ ✓ Adaptive temporal feature

EST [92] H × W × B × 2 Feat & Chan Chan ✓ ✓ Temporal encoding

Matrix-LSTM [2] H × W × B × C Feat & Chan Feat & Chan ✓ ✓ Spatial-temporal encoding

Chapter 4, while in Chapter 5 we compare the generalization performance of
several event representations when domain shifts are considered.

2.2.2 Grid-like Event Representations

Given a stream of asynchronous events E = {ei = (xi, yi, ti, pi)}N
i=1 spanning

a temporal window ∆T, the process of extracting a grid-like representation
can be described as a function ΦR mapping E into a volume RE ∈ RH×W×F

with F features per pixel.
Several representations of this kind have been proposed over the years,

mostly differing in how pixel features are computed and aggregated over
time. Gehrig et al. [92] show that most of them can be unified under a
unique framework by rephrasing representations as kernel convolutions on
the event field, i.e., a discretized four-dimensional manifold spanning the two
spatial dimensions, as well as the time and polarity dimensions. Grid-like
representations are usually hand-crafted, meaning that the transformation
mapping the event stream into RE is fixed, and it does not depend on the
task at hand. Recently, a few works [2, 92, 94] propose to embed neural layers
within ΦR and jointly train them together with the rest of the network to
learn to extract task-specific representations.
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RGB Voxel-Image [55] Multi-Chan. BII [106] EST [92]

TBR [93] BII [110] HATS [85] Exp. TS [41] DiST [112]

Figure 2.5: Qualitative comparison between different event representations using the
last 100ms (third saccade) of the butterfly_0006 N-Caltech101 [116] sample.
The first row shows three voxel-based representations making use of 3
bins, where channels are represented with different colors and shown
both combined and separately at the side of the figure. The Voxel Image
[55] and the multi-channel BII [106] are very similar, with the Voxel Image
introducing an additional temporal scaling whose effect is noticible in
the first channel, in this example. The second row depicts two single
channel representations followed by three two-channel representations,
where features of positive events are shown in red and that of negative
events in blue.

We provide an overview of the most popular representations in the follow-
ing, focusing on those that have been used in previous works as the input of
deep neural networks. A comparison between these representations is given
in Table 2.1 on the preceding page, while visual depictions are provided in
Figure 2.5.

simple aggregation methods. Early deep neural networks’ applications
to event-based cameras employed simple aggregation procedures to condense
event data. These were often inspired by other event-based algorithms [41,
100, 110, 115, 117] that focused on providing low-latency solutions to several
computer vision applications.

In these representations, the sequence of events E (x,y,p) = {ei ∈ E | xi =

x, yi = y, pi = p} arriving at each pixel location, often split by polarity, is
aggregated into a single pixel feature through basic aggregation methods.

The event counts representation [54, 109] uses the cardinality | · | of E (x,y,p)

to aggregate event sequences, discarding any temporal information:

Rcount
E (x, y, p) =| E (x,y,p) | . (2.3)
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On the contrary, the Surface of Active Events (SAE) [41, 111] only preserves
recent temporal information by keeping track of the timestamp of the last
event received at each pixel:

RSAE
E (x, y, p) = max

i∈E (x,y,p)
ti, (2.4)

where, to simplify notation, we indicate as i ∈ E (x,y,p) the indices of the
events ei in the sequence. As time is inherently monotonically increasing, the
function in Equation 2.4 describes a monotonically increasing surface [41,
111], hence its name. When time-modulated kernel functions are applied
over this representation, highlighting more descriptive features of the event
stream, the resulting representations are usually called time surfaces [41, 84],
as described later in the text.

Finally, polarity information is used within the Brightness Increment Image
(BII) [110] in which the pixel feature is computed summing together the
polarity value pi ∈ {−1, 1} of all the events that fired at the same location:

RBII
E (x, y) = ∑

i∈E (x,y)

C · pi, (2.5)

where C is the camera’s contrast threshold (sometimes set equal to 1 [106,
118]), and we dropped the parameter p in E (x,y) to indicate the set of events
fired at pixel location (x, y), regardless of their polarity value.

While still effective in some applications [105], these representations ex-
hibit some issues that limit their performance when used with ordinary
convolutional neural networks. They are usually not resilient to noise and
condense all events into a single two-dimensional frame, thus sacrificing
temporal resolution. Extensions of these simple representations were later
proposed to address some of these limitations. The max operator in SAE

is commonly replaced with an average over the events’ timestamps [113],
and filtering mechanisms are optionally used [100, 113]. The Filtered Sur-
face of Active Events (FSAE) [100] reduces artifacts occurring at high event
rates by artificially limiting the number of representation’s updates, while
the Inceptive Event Time-Surface (IETS) [113] further discards events to fo-
cus more on the shape of moving objects than the magnitude of intensity
changes4. With a similar aim, the extension of the event counts representation
proposed by Rebecq et al. [115] introduces motion compensation from IMU
measurements, thus reducing motion-blur-like artifacts caused by moving
edges. More sophisticated solutions involve motion compensation algorithms
[114, 119–121] that estimate the optical flow of the events and can be em-
ployed as pre-processing steps to adjust for motion prior to computing the
event representations, as done by Mitrokhin et al. [114] on regular count

4 Notice that these representations, contrary to what the names suggest, do not apply a time-
dependent kernel over the surface of most recent events. Instead, a simple average is used
to aggregate all pixel timestamps into a unique feature value, effectively replacing the max
operator in SAE with an average.
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and timestamp images. When used with deep neural networks, all these
representations are typically normalized to lie within the [0, 1] value ranges,
as commonly done with images.

discounted sorted timestamp image (DiST). Another extension of
the SAE representation is that proposed very recently by Kim et al. [112].
They exploit the spatial neighborhood around each pixel to suppress the
contribution of noisy events and quantize temporal features in such a way as
to remove the time scale from temporal delays. A Discounted Time Image
(DiT) is first computed starting from SAE as follows:

RDiT
E (x, y, p) = RSAE

E (x, y, p)− αD(x, y, p), (2.6)

where α is a constant scale parameter and D(x, y, p) is a pixel-wise discount
factor defined as:

D(x, y, p) =
max

i∈Nr(x,y,p)
RSAE

E (xi, yi, p)− min
i∈Nr(x,y,p)

RSAE
E (xi, yi, p)

| Nr(x, y, p) | . (2.7)

D(x, y, p) computes the difference between the latest and oldest timestamps
in a neighborhood Nr(x, y, p) of radius r around each pixel location (x, y),
normalized by the events count of the neighborhood. Events triggered by hot
pixels are associated with a high discount factor since, when isolated, their
neighborhood has a low events count. The same happens in regions affected
by background noise, as the event frequency is typically low, and thus the
numerator in D(x, y, p) large.

A Discounted Sorted Timestamp Image (DiST) representation is finally com-
puted from RDiT

E by first building a matrix for each polarity ArgSortp(RDiT
E ) ∈

Z+
0

H×W replacing each value in RDiT
E with the position that value has in the

global sorting of all the discounted time features. The final representation is
the normalized version of that matrix:

RDiST
E (x, y, p) =

ArgSortp(RDiT
E )(x, y)

maxx,y ArgSortp(RDiT
E )

. (2.8)

By replacing temporal features with their normalized sorting index, the
relative order between features is maintained, but their difference, which
originally encoded the delay between two events, is replaced with a con-
stant value. As a result, the representation becomes invariant to the scale of
temporal delays and, therefore, less sensitive to the motion speed [112].

time surfaces. Building upon SAE, several extended representations can
be computed by applying time-sensitive kernels over the events’ activity
surface. The SAE representation, keeping track of the timestamp of latest
event in each pixel, successfully encapsulates many information about the
motion of brightness gradients in the scene. Indeed, in this representation,
a moving edge creates a trail pattern whose precise timestamp information
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can be exploited to derive both direction and speed. However, in certain
applications, it may be desirable to forget about events that occurred far in
the past, decaying old information as time passes and giving the latest events
greater importance. The resulting representations are commonly known as
Time Surface (TS).

Several temporal kernels have been proposed over the years [41, 84, 85],
with the majority of them differing in terms of the approach employed to
decay information. These same, or very similar, activations are also often
called membrane potentials when used to define the behaviour of SNN neurons
[66, 122, 123]. The simplest of these decay timestamps either linearly [41]

Λ(x, y, t) =

P(x, y) ·
(

1 + RSAE(x,y)−t
τ

)
, RSAE(x, y)− t >= τ

0, RSAE(x, y)− t < τ

, (2.9)

or exponentially [41, 84]

Γ(x, y, t) =

P(x, y) · e

(
RSAE(x,y)−t

τ

)
, RSAE(x, y) <= t

0, RSAE(x, y) > t
(2.10)

as time progresses, with the time constant τ defining the duration after which
each event’s contribution is decayed to 0, and P(x, y) providing the polarity of
the latest event in each pixel location. The result is a temporal feature within
the [−1, 1] range, with the polarity determining the initial value (either 1 or
−1) of each pixel feature. In order to avoid overriding previous information
when a new event arrives, the accumulating exponential kernel [41] extends
the exponential kernel by incorporating the value the pixel had at the time
τ
(x,y)
e a new event was received at (x, y):

Φ(x, y, t) =


(

Φ
(

x, y, τ
(x,y)
e

)
+ P(x, y)

)
· e

(
RSAE(x,y)−t

τ

)
, RSAE(x, y) <= t

0, RSAE(x, y) > t
.

(2.11)
A two-dimensional time surface is then computed by evaluating the previ-

ous equations at a particular time instant t, typically the timestamp of the
latest event in E , obtaining H ×W representations RΛ, RΓ, and RΦ. Although
these representations are rarely used as input to deep neural networks, a
similar application is that proposed by Lagorce et al. [84], who design a multi-
layer architecture named Hierarchy Of Event-Based Time-Surfaces (HOTS)
similar to a convolutional neural network but made of exponentially decaying
surfaces RΓ. In this version, two sets of time surfaces are built, one for each
polarity, by removing the explicit dependency from the polarity P(x, y) in
Equation 2.10, and locally defining them over a small neighborhood around
each event as in a convolutional kernel.
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histograms of time surfaces (HATS). The Histograms of Time Sur-
faces (HATS) [85] is a two-channel representation extending the concept
of time surface with a memory mechanism resilient to noise. HATS are
built by first dividing the event stream into C non-overlapping cells of size
K × K pixels each. Then, from the events originating in each cell c, a grid of
(2ρ + 1)× (2ρ + 1) histograms hc,p is built, one for each polarity p. These
histograms are computed by aggregating time surfaces Tei defined as:

Tei(p) =

 ∑j∈Nei (p) e−
ti−tj

τ if pi = p

0 otherwise
, (2.12)

where Nei(p) is the cell’s memory providing the set of events preceding ei in
a [−ρ, ρ] spacial neighborhood.

The final two channels representation is obtained by rearranging together
the normalized time surface histograms based on the location of the originat-
ing cell:

RHATS
E = {hCj(p)}C

j=1, hCj(p) =
1
|Cj| ∑

ei∈Cj

Tei(p). (2.13)

Despite being originally designed to provide local features for support
vector machines [85], few works use HATS as an event representation in
deep neural classifiers [92]. The ρ parameter is often such that 2ρ + 1 < K,
thus reducing the initial grid resolution. Temporal resolution is also lost, as
the entire temporal window is condensed into a single frame with no bins
retaining temporal resolution. For these reasons, other event representations
are usually preferred in deep learning applications.

voxel-grid-based representations. When designing deep neural
networks for tasks involving fine-grained temporal predictions, such as
when performing optical flow and ego-motion estimation [54, 55], image
reconstruction [107, 108], and frame interpolation [124], input representations
must be capable of preserving the event stream’s temporal resolution as
much as possible. However, all preceding representations aggregate the event
stream E into either a single-channel or a two-channel event-frame depending
on whether the polarity is kept separate. Temporal information is used as the
pixel feature, which is typically obtained by aggregating the timestamps of
all the events occurring at the same pixel location. Although time is used as a
feature, this aggregation process condenses the whole event stream in just a
few channels, thus losing any temporal resolution, especially when the event
stream spans several milliseconds, and potentially hurting performance.

In order to alleviate these issues, several works [55, 106, 118] propose to
extract multiple representations from the same event sequence, each aggre-
gating a different temporal window of the original stream. A voxel grid
structure splits the event stream into a spatio-temporal grid H × W × B hav-
ing the original spatial resolution but discretizing time into B consecutive
bins. Two general mechanisms have been proposed [55, 106] to define the
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bins. The first partitions the time frame ∆T based on time into B equally-sized
sub-windows from which representations Rb are extracted, each aggregating
the subset Eb =

{
ei ∈ E | ti ∈ [ (b−1)∆T

B , b·∆T
B ]
}

and corresponding to a single
H × W slice of the voxel grid. The second is similar, but fixes the number of
events in each bin to a predefined number Ne, thus splitting the sequence into
Eb = {ei ∈ E | i ∈ [(b − 1)Ne, b · Ne]} intervals.

Any of the previous aggregation mechanisms can potentially be used to
condense the events Eb into the corresponding bin’s representation Rb. The
multi-channel image of Wang et al. [106] [118] aggregates events by polarity,
using the same procedure of BII in Equation 2.5, while the voxel-grid image
proposed by Zhu et al. [55] also introduces an interpolation strategy that
gives recent events greater importance:

Rvox
E (x, y, b) = ∑N

i=1 pikb(x − xi)kb(y − yi)kb(b − t∗i )

with t∗i = (B − 1) ti−t1
tN−t1

, and kb(a) = max(0, 1 − |a|),
(2.14)

where t∗i are the event timestamps rescaled into [0, B − 1], and kb(a) is the
bilinear sampling kernel proposed by Jaderberg et al. [125]. Spatial inter-
polation is often removed since it only plays a role if sub-pixel events are
present in the event stream, often resulting from undistortion and rectification
transformations, or from augmentation procedures used in training, such as
random rotations, translations, and scaling.

Voxel-grid images [55] are arguably the most popular grid-like event
representation in deep learning applications. They have been used as input
to deep architectures in a variety of tasks, including optical flow, depth,
and egomotion [54, 55], object detection [104], classification [92], and image
reconstruction [107, 108, 126].

temporal binary representation (TBR). Recently proposed by Inno-
centi et al. [93], the Temporal Binary Representation (TBR) provides an alterna-
tive solution to maintain temporal resolution without increasing the number
of channels. TBR first computes an intermediate multi-channel representation
B ∈ {0, 1}H×W×B by stacking together two-dimensional frames extracted
from B independent bins of equal temporal duration. These frames simply
indicate the occurrence of at least one event in every pixel location, regardless
of its polarity. Each pixel’s feature vector B(x, y) = [B(x, y, 0),B(x, y, 1), . . . ,
B(x, y, B − 1)] is then interpreted as a binary number with B digits, and
converted into its decimal representation to obtain the final representation:

B(x, y, b) = 1(x, y, b),

RTBR
E (x, y) = 1

B bin2dec(B(x, y)) = 1
B ∑

b=0,...,B−1
2b · B(x, y, b), (2.15)

where 1(x, y, b) is the indicator function returning 1 if at least one event is
received at pixel (x, y) within the temporal bin b. The resulting represen-
tation has a single channel, but it condenses all the B event frames with
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Figure 2.6: AMAE [94] representation by varying motion patterns. For each group of
two images, the left one reports the event counts (Rcount), while the right
one is AMAE. The representation remains almost unchanged despite
different motion trajectories. Figure adapted from that of Deng et al. [94].
Copyright ©2020 IEEE.

lossless compression. This property is particularly ideal in tasks where a
high temporal resolution is a prerequisite for a good prediction, such as in
action recognition tasks [93]. Increasing the number of bins, and thus the
resolution, has no impact on the dimensions of the RTBR

E tensor, contrary to
other representations.

event spike tensor (EST). The Event Spike Tensor (EST) was proposed
by Gehrig et al. [92] as the first end-to-end trainable grid-like representation.
The procedure is similar to a voxel-grid image, with the difference that event
timestamps are used as pixel features, and the weighting of each event’s
contribution is learned with a Multi Layer Perceptron (MLP) network instead
of being fixed. Events are grouped by polarity to extract a two-channel
representation from each bin:

REST
E (x, y, b, p) = ∑

ei∈E (x,y,p)

t̂i · K
(

t̂i −
b

B − 1

)
, (2.16)

where E (x,y,p) is the set of all events of polarity p received in a specific (x, y)
pixel, and t̂i = ti/tN is the normalized event timestamp.

EST effectively enhances event representations by incorporating learnable
components within the transformation, thus making automatic the process
of tuning the representation for a task. It has been applied successfully to
object recognition [92, 127], optical flow prediction [92], as well as semantic
segmentation [127].

adaptive motion-agnostic encoder (AMAE). Deng et al. [94] pointed
out that an object classification network should be invariant to the movement
patterns of the object being classified. A good representation for classification
should thus disregard any motion-related feature and only focus on encoding
the object’s appearance. In other words, representations extracted from the
same object moving with different patterns should look the same. While
event cameras exhibit very little motion blur, using different bins to condense
events introduces back similar artifacts that could make deep neural networks
suffer from motion biases if not properly trained.
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Adaptive Motion-Agnostic Encoder (AMAE) is a learnable representation
that adapts to the scene’s movement to extract motion-invariant features.
A time-sensitive tensor Tp is first computed, one for each polarity, using a
transformation analogous to the voxel image in Equation 2.14, but making
use of the Dirac delta in place of a bilinear kernel, and time instead of
polarity. Pixels in this representation are then re-weighted to get rid of
motion information by an adaptive scoring function FAdapt,p defined as:

FAdapt,p(x, y) =


eλ·(Tp(x,y)−θ−Mp) if Tp(x, y) < θ−Mp

eλ·(−Tp(x,y)+θ−Mp) if Tp(x, y) > θ−Mp

tanh
(
Tp(x, y)− θ−Mp

)
+ 1 otherwise

(2.17)

where Mp =
∑x,y Tp(x,y)
nonzero(Tp)

is the sum of the intensity values normalized by the
number of active pixels, and {θ+, θ−, λ, β} are adaptive parameters predicted
from Tp by a convolutional neural network.

The final representation, computed as

RAMAE
E (x, y) = FAdapt,p(x, y)× Tp(x, y), (2.18)

demonstrated better performance than other learnable representations, such
as EST, when the classification network is tested on motion patterns that differ
from that used in training [94]. A visual representation of motion invariant
features extracted by AMAE is given in Figure 2.6 on the previous page.

2.2.3 Datasets and Simulators

As it is typical whenever a novel sensor is first launched, very few datasets
featuring event data were accessible in the first several years. This lack limited
event cameras adoption, especially in deep learning applications where the
quality and complexity of state-of-the-art algorithms traditionally follow
those of the datasets. Deep neural networks require precise annotations and
a large amount of data to be adequately trained, which initially lacked in the
field, also due to the increased difficulty in annotating such a sparse visual
encoding.

The availability of event-based datasets is today rapidly increasing. Basic
vision tasks, such as object recognition, were among the first to benefit from
this increased availability, fueling the deep learning community’s interest in
the sensor. However, in challenging tasks requiring pixel-level annotations,
large, high-quality datasets are still missing. This lack has recently encouraged
researchers to exploit unsupervised deep learning techniques and new event-
camera simulators to train effective neural models, even in complex tasks.

This section provides an overview of the event-based datasets and simu-
lators available in the literature, focusing on those related to this thesis. A
description of the primary datasets, grouped by category, is provided in the
following, while an overview is given in Table 2.2 on the facing page.
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Table 2.2: Comparison between available datasets for classification, gesture and
action recognition, detection, optical flow prediction, and segmentation.

Dataset Task Acquisition # Classes # Labels Camera
Resolution Total

(pix) time (h)

Poker-DVS [128] Classification real-world, still cam 4 131 DVS128 [43] 31 × 31 2.1 sec

N-MNIST [116] Classification LCD, still image, moving cam 10 70, 000 ATIS [47] 34 × 34 5.83

MNIST-DVS [71] Classification LCD, moving image, still cam 10 30, 000 DVS128 [43] 128 × 128 16.67

CIFAR10-DVS [129] Classification LCD, moving image, still cam 10 10, 000 DVS128 [21] 128 × 128 3.33

N-Caltech101 [116] Classification LCD, still image, moving cam 101 9, 146 ATIS [47] 302 × 245 (avg) 0.76

DVS-Caltech256 [130] Classification LCD, moving image, still cam 257 30, 607 DAViS240C [131] 240 × 120 8, 58

N-Cars [85] Classification real-world, moving cam 2 24, 029 ATIS [47] 55 × 65 (avg) 0.68

N-ImageNet [112] Classification LCD, still image, moving cam 1, 000 1, 781, 167 DVS Gen3 [132] 480 × 640 24.74

N-ROD [4] Classification LCD, still image, moving cam 51 41, 877 ATIS Gen3 [25] 256 × 256 3.49

ASL-DVS [89] Gesture Recog. real-world, still cam 24 100, 800 DAViS240C [131] 240 × 120 2.80

DVS128 Gesture [133] Gesture Recog. real-world, still cam 11 1, 342 DVS128 [21] 128 × 128 2.24

DVS-UCF-50 [130] Action Recog. LCD, moving image, still cam 50 6676 DAViS240C [131] 240 × 120 13.81

VOT Challenge 2015 [130] Tracking LCD, moving image, still cam − 21455 DAViS240C [131] 240 × 120 0.20

Pedestrian Detection [134] Detection real-world, still cam 1 11, 667 DAVIS346 [25] 346 × 260 0.10

Gen1 Automotive [135] Detection real-world, moving cam 2 255, 781 ATIS [47] 304 × 240 39, 32

1Mpx Detection [104] Detection real-world, moving cam 3 25M Gen4 CD [34] 1280 × 720 14, 65

MVSEC-OF [54, 136] Optical Flow real-world, moving cam − 20Hz DAVIS346 [25] 346 × 260 0.32

DVSMOTION20 [137] Optical Flow real-world, moving cam − 1kHz DAVIS346 [25] 346 × 260 0.02

DDD17-EvSeg [105, 138] Semantic Seg. real-world, moving cam 6 19, 840 DAVIS346 [25] 346 × 260 2.15

DDD17-EISD [138, 139] Instance Seg. real-world, moving cam 1 19, 000 DAVIS346 [25] 346 × 260 2.06

(a) Fast browsing (b) Uncut sequence

club diamond

heart spade

(c) Samples

Figure 2.7: Samples in Poker-DVS [128] are obtained by first quick browsing [71]
a deck in front of an event camera (a)-(b) and then extracting 31 × 31
motion-compensated pips with a tracking algorithm. Two samples from
each class are shown in (c). Image in (a) is taken from Perez-Carrasco et
al. [71]. Copyright ©2018 IEEE.

object and gesture recognition datasets. Event-based camera’s
recognition datasets, by definition, present an extra level of complexity when
compared to typical frame-based image benchmarks. Because a DVS sensor is
only sensitive to changes, brightness changes or movement must be present
in the scene in order for visual features to appear.

The Poker-DVS [128] was one of the very first classification datasets ever
to be released. Originally designed to show off the temporal characteristics
of event-based cameras, it was later used to benchmark simple classification
architectures [71, 84, 140]. In its latest version, the dataset features just 131
samples in which poker pips at a 31 × 31 pixel resolution move for about
20-30 ms. Pips were extracted from three recordings in which a specially
made poker deck was quickly browsed in front of an event camera. Examples
of Poker-DVS samples are provided in Figure 2.7.
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scale4 scale8 scale16 N-MNIST

Figure 2.8: MNIST-DVS [71] (left) and N-MNIST [116] (right) samples. MNIST-DVS
samples are provided in three different scales at 128 × 128 resolution,
while N-MNIST contains 34 × 34 recordings at fixed scale.

Figure 2.9: N-Caltech101 [116] samples. The first row shows RGB images from
the original Caltech101 [142] dataset, while the second provides N-
Caltech101 event conversions as voxel-grids.

Motivated by the need of having large datasets for benchmarking new
classification approaches, Serrano-Gotarredona and Linares-Barranco [128]
propose to convert existing frame-based datasets into their event-based ver-
sion by artificially moving image samples on an LCD monitor and recording
them with an event-based camera. The MNIST-DVS [71] is a partial con-
version of the popular MNIST [141] dataset obtained with this technique,
featuring 10 different digit classes equally split among 10, 000 samples, each
recorded at three different resolutions.

Recordings obtained by moving images on a monitor, however, are char-
acterized by discontinuous movements since image trajectories depend on
the refresh rate of the LCD screen used. To compensate for this issue, Or-
chard et al. [116] propose to keep the image still and move the camera
instead. A pan-tilt mechanism moves the camera with a motion resembling
the retinal saccadic movements observed in primates and humans. Using
this procedure, they performed a new conversion of the MNIST dataset,
called N-MNIST [116], as well as a novel conversion of the Caltech101 [142]
image-based dataset, named N-Caltech101 [116], both featuring all the original
samples. The first provides 60, 000 training and 10, 000 testing samples at a
34 × 34 resolution, as in the original dataset, while the second is composed
of 9, 146 samples of varying size, split into 100 categories and an extra back-
ground class. Figure 2.8 compares MNIST-DVS and N-MNIST in terms of
resolution and scale, while Figure 2.9 shows few examples of N-Caltech101

recordings together with the original RGB images.
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background car

Figure 2.10: Samples from the N-Cars [85] classification dataset. The first three
samples are from the background class, while the remaining ones are
cars.

Following very similar procedures, a number of event-based conversions of
popular image-based datasets was later proposed. Li et al. [129] released the
CIFAR10-DVS dataset, a conversion of the CIFAR-10 [143] benchmark with a
total of 10, 000 128× 128 samples. Hu et al. [130] converted a number of frame-
based datasets, including the Caltech-256 [144], featuring 30, 607 images split
roughly equally into 257 categories, and the UCF-50 [145] Action Recognition
Dataset consisting in 6676 samples split in 50 action classes with an average
length of 6.64s. Very recently, Kim et al. [112] released the first event camera
conversion of the large-scale ImageNet [146] dataset. N-ImageNet is the
largest object recognition dataset for event-based cameras currently available
by number of classes and samples. It features 1, 781, 167 event recordings
split into 1, 000 different classes, each lasting 50ms. The recording setup is
similar to that used in previous dataset conversions. However, images are
captured with different camera trajectories and brightness conditions, two of
the primary aspects affecting event generation, thus enabling the analysis of
classifiers’ robustness under varying conditions.

The use of automatized procedures for converting well-known image-based
datasets simplified the effort of collecting samples while also enabling the
creation of benchmarks that could be used to compare event-based networks’
performance with that of image-based recognition architectures directly. How-
ever, these conversion procedures introduce non-idealities that one would
rarely see in real-world recordings. Camera movements are generally fixed,
inducing motion biases when training neural networks, and recordings from
LCD screens are typically affected by unrealistic noise patterns caused by the
refresh rate.

For these reasons, researchers started developing realistic datasets by
recording objects in real-world scenes. An example is the N-Cars [85] dataset,
a collection of urban recordings lasting 100ms each and featuring two object
categories: cars and urban background. The dataset comes split into 7, 940
car and 7, 482 background training samples, and 4, 396 car and 4, 211 back-
ground testing samples, obtained by cropping bounding boxes around objects
in driving scenes. Examples from both classes are provided in Figure 2.10.

Another dataset is the ASL-DVS [89], a set of handshape recordings for
American Sign Language (ASL) classification. The dataset features 24 classes
corresponding to the 24 letters (from A to Z, excluding the J) of the ASL, each
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with 4, 200 samples lasting approximately 100 ms and recorded in real-world
conditions. Far more complex are the recordings in the DVS-128 Gesture [133]
dataset, which constitutes the first proper gesture recognition event-based
benchmark. The DVS-128 Gesture consists of 1, 342 instances of 11 different
hand and arm gestures, collected from 29 subjects in 122 trials under 3 distinct
lighting conditions.

Algorithms proposed in this thesis are, for the most part, validated on object
recognition benchmarks. We use most of the datasets presented in this section,
except for the gesture recognition ones, with the algorithms discussed in
Chapter 4 and Chapter 5. In Chapter 5, we also adopt the procedure proposed
by Orchard et al. [116] to design N-ROD [4], the first dataset for studying
Synthetic-to-Real domain shifts in event-based recordings.

object detection datasets. Object detection [147–149] is typically re-
garded as a fundamental task in computer vision, as it serves as the founda-
tion of many other more advanced problems, including object tracking [150,
151], instance segmentation [152–154], image captioning [155, 156], and many
others. It is characterized by the dual goal of determining the location of the
objects in a given scene (object localization) as well as the category to which
each object belongs (object classification).

Among the typical deep learning vision tasks involving fine-grained pre-
dictions, object detection is nowadays the one enjoying the largest hand-
annotated event-based datasets. However, this achievement is only very
recent [104, 135]. N-Caltech101 [116] is the first dataset to provide bounding
boxes annotations for event-based data. Because the dataset was produced
capturing samples from a monitor in a controlled setting, it was also possible
to transfer all of the original image-based annotations to events by compen-
sating for the known camera motion. However, objects in N-Caltech101 are
often centered, and they occupy most of the frame, making learning to detect
objects driven more by recognition than localization. Besides the recognition
datasets discussed previously, Hu et al. [130] also converted the VOT Chal-
lenge 2015 Dataset [157] by recording RGB video clips with an event camera.
Since the dataset is primarily meant for object tracking, it contains bounding
boxes annotations for just 60 single-object sequences, making it impractical
for training robust object detectors.

The first proper real-world event-based detection dataset is due to Miao
et al. [134], who developed a pedestrian detection dataset featuring both
indoor and outdoor sequences, two weather conditions (sunny and rainy),
and three different environments. The dataset is composed of 12 sequences
with an average length of 30 sec, recorded with a DAVIS camera and manually
annotated every 20 ms. The setting used in all these sequences involves a
fixed camera pointed at walking pedestrians in a static environment. Object
detectors trained in this context can reach good performance despite the
restricted number of training sequences since only events related to moving
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Figure 2.11: Samples from the Gen1 Automotive Detection dataset [135]. Each image
depicts 20ms of events, together with cars and pedestrian bounding boxes
in blue and cyan, respectively. The dataset contains recordings from
different environments and moving conditions. Two-wheelers are not
considered as pedestrians, and bounding boxes are also provided for
objects in static scenes, making detection very challenging.

people are recorded, not the background, but they are still confined to operate
in this simplified setting.

Tournemire et al. [135] released the Gen1 Automotive Detection Dataset,
the first large-scale real-world automotive dataset for object detection. The
dataset contains more than 39 hours of automotive sequences recorded with
the QVGA Prohpesee sensor [25]. It features hand-annotated bounding boxes
for cars and pedestrians at about 4 Hz, yielding more than 255, 000 labels in
total. Samples showing different environments and challenging conditions
for prediction are shown in Figure 2.11. An improved version was released in
2020 by Perot et al. [104] who recorded their dataset using the latest Prophesee
event camera with 1-megapixel resolution and extended the set of labels also
to include two-wheelers for a total of over 25M bounding boxes labeled at
high frequency. The dataset is, to date, one of the most advanced automotive
datasets currently available for event-based sensing.

Object detection is one of the benchmarks used to validate some of the
neural architectures proposed in this thesis. The work discussed in Chapter 3

collocates before the release of real-world detection datasets, and it thus relies
on simplified benchmarks. We perform tests on the N-Caltech101 dataset
and propose different evaluation procedures based on detection variants of
Poker-DVS and N-MNIST, as well as a simulated dataset. Finally, we evaluate
the learnable representation discussed in Chapter 4 on the Gen1 Automotive
Detection Dataset.

optical flow and semantic segmentation datasets. Tasks requiring
pixel-level predictions are by far the most challenging in deep learning
research. Among these, some of the most prominent applications include
optical flow prediction [158], which requires the network to predict the motion
vector of each pixel in the image, and semantic segmentation [159, 160], which
extends the detection task at the pixel level, asking the network to classify
each pixel based on the category of the object to which it belongs. However,
as the task complexity increase, so does the complexity and accuracy of the
annotations required for such tasks. As a result, very few real-world datasets
for event-based vision featuring pixel-level annotations are currently available
in the literature.
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driving flying

Figure 2.12: Samples from the MVSEC [136] optical flow extension proposed by
Zhu et al. [54]. Driving sequences (left) are used for training, while
sequences captured with a drone (right) for testing. The top row shows
grayscale images taken by the DAVIS, followed by event counts and the
ground truth flow.

Optical flow prediction has traditionally been tackled with analytical so-
lutions exploiting the event-based camera’s ability to detect motion. These
approaches do not need training data and are usually tested on limited
recordings, such as those used by Rueckauer and Delbruck [161] and Bar-
dow et al. [162]. Zhu et al. [54] proposed the first large-scale optical flow
dataset for self-supervised training of deep neural networks. They extended
the Multivehicle Stereo Event Camera Dataset (MVSEC) [136] by deriving
ground truth flow labels for testing, and used grayscale images from the
DAVIS camera with a photometric loss for training. Optical flow labels were
generated by calculating the motion field from the available camera motion
and LiDAR depth maps, thus assuming motion is performed in a static
environment. The dataset features a range of different vehicles, both indoor
and outdoor scenarios, and different lighting conditions. Car driving scenes
are typically used for training, while indoor hexacopter flying scenes for
testing, enabling a robust cross-environment evaluation. Samples from both
these sets are shown in Figure 2.12. Recently, Almatrafi et al. [137] proposed
the DVSMOTION20 dataset, a collection of event recordings captured with
a DAVIS camera mounted on a gimbal and performing random motions at
varying speeds. The dataset features four indoor static scenes as well as two
sequences with moving objects.

Recent is also the application of deep learning in event-based semantic
segmentation. To date, very few real-world datasets featuring ground truth
labels are currently available in the literature. Alonso and Murillo [105]
published an extension of the DAVIS Driving Dataset (DDD17) [138], initially
intended for steering angle prediction, that adds semantic segmentation
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Figure 2.13: Samples from the DDD17 [138] extended by Alonso and Murillo [105].
The first two rows show DAVIS grayscales and events, displayed as
normalized event counts, while the last row displays autolabeled seg-
mentation masks.

masks on a portion of the recordings. These were obtained by labeling the
DAVIS camera’s grayscales with a network pre-trained on Cityspaces [163],
and then transferring annotations to the events for a total of 15, 950 training
and 3, 890 testing labeled frames. A few samples from this extended subset
are displayed in Figure 2.13. Recently, Yang et al. [139] further extend the
DDD17 dataset providing car instance segmentation labels for a subset of
14, 900 training and 4, 100 testing labeled images. As images from the DAVIS

visually differ from traditional grayscale images, predicted labels are usually
not particularly accurate, thus only providing coarse supervision.

We evaluate some of the methods presented in this thesis using datasets
covered in this section. In Chapter 4 we test our proposed event representation
on the optical flow prediction task with the MVSEC dataset, and perform
a preliminary analysis of the domain adaptation technique discussed in
Chapter 5 on an extended version [127] of the DDD17 segmentation dataset.

event-camera simulators. Although the number of annotated event-
based datasets is constantly increasing, as testified by the recent release of
the N-ImageNet [112] dataset, their availability still lags far behind that of
standard image-based datasets, limiting the generability and complexity of
deep neural networks. This lack gets even more critical in tasks requiring
pixel-level annotations, where large hand-annotated datasets are still to be
released due to the complexity and costs of their production. As a result,
there is a need in event-based vision to develop alternative solutions that
compensate for this deficiency.

Simulation, together with unsupervised training, is to date one of the few
established solutions for training deep neural networks in complex event-
based vision tasks. Katz et al. [164] were the first to demonstrate how to
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emulate both DVS and color sensitive (cDVS [46]) sensors. They used a 125
frames per seconds camera to capture high-speed videos that were then
converted into event streams. The system processes the video stream and
keeps track of the logarithmic brightness at each pixel location. Whenever
the brightness differs from that of the last event generated at that location
by a quantity above or below the preset threshold, a new ON/OFF event
is generated with timestamp interpolated from that of the frames, and the
pixel brightness is stored for future events generation. The cDVS sensor is
emulated similarly but by keeping track of variations in color intensities.

Following a similar principle, the DAVIS [165] and the ViSim [166] simulators
extend simulation also to produce additional modalities, such as grayscales,
depth, and inertial measurement unit (IMU) readings. These frameworks
directly interface with a renderer (either Blender [167] or a custom-made
one [166]), enabling event simulation to produce datasets with potentially
infinitely different scenes owing to synthetic rendering.

These approaches all rely on synchronously sampling frames at a very high
frame rate to estimate the visual signal precisely. Rebecq et al. [168] improve
over these approaches by adaptively varying the frame rate of the source
video based on the predicted dynamics of the visual signal, thus reducing
the number of frames to be generated and analyzed. The ESIM simulator
supports a number of different rendering engines, and it was also recently
integrated within the CARLA [169] driving simulator, easing the generation
of realistic driving scenes. An extension to ESIM named Vid2E [127] enables
the conversion of traditional 30-60 fps videos by employing a slow-motion
neural network to interpolate the frames at an arbitrary framerate, adaptively,
prior to event simulation.

All these engines rely on an ideal model of the DVS sensor and do not con-
sider noise and non-idealities. Event-based cameras are extremely sensitive
sensors that may behave differently based on environmental conditions. The
brightness level [170] or even the temperature [171] can cause the camera
to produce different event dynamics. For instance, at very low brightness
regimes, the event camera pixels transition between two thresholds more
slowly, causing latencies and artifacts equivalent to motion blur. The very
recent v2e [170] simulator models some of these non-idealities, providing
realistic event simulation, even under non-ideal operating conditions.

In this thesis, we used simulation at different stages to evaluate and train
the proposed methods. In Chapter 3, we use the DAVIS simulator to produce
object detection scenes and train our asynchronous convolutional networks.
In Chapter 5, instead, we use the ESIM simulator to study how much sim-
ulation’s non-idealities affect the robustness of deep neural networks when
they are tested on real event-based cameras. For this purpose, we propose a
novel dataset that supplements N-ROD [4] with events generated with ESIM
as well as a method to tackle domain shift issues during training.
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2.2.4 Applications

Thanks to their recent growth in popularity, the increase in the availability
of event-based datasets, as well as the development of increasingly more
accurate simulation procedures, event-based cameras are nowadays success-
fully applied in several computer vision tasks. These range from applications
emphasizing their temporal resolution and low latency characteristics, typi-
cally leveraging hand-engineered algorithms, to general vision understanding
involving low-level and high-level learning tasks. This section focuses on
learning-based vision tasks and reviews state-of-the-art approaches on the
four primary tasks investigated in this thesis: object recognition and detection,
optical flow prediction, and semantic segmentation.

object classification and detection. Motivated by the same bio-
logical inspiration that drove event-based development, early research on
event-based object recognition focused on mimicking the processing princi-
ples of the first visual cortex layers. SNNs were quickly adopted to process
event-based visual data, as they intend to provide a biologically inspired
model of the neuron and, thus, they naturally fit the event-based encoding.
Based on biological models of the visual cortex [172, 173], several simple
architectures for event recognition were proposed [140, 174, 175] extracting
a hierarchy of visual features by leveraging simple and complex neural cells.
These feature extractors were typically based on hand-engineered filters,
such as Gabor filters [176, 177], or learned using unsupervised, biologically
realistic learning rules [178, 179]. The complexity and effectiveness of spik-
ing recognition networks evolved in step with their training procedures [73,
180–182]. Starting from simple networks with only a few layers capable
of classifying basic shapes [66, 140, 183] (such as those in Poker-DVS and
N-MNIST), recent SNNs can now handle challenging visual patterns and
complex architectures [180, 184].

Despite the recent advances in the design and training of deep SNNs, the
performance of these neural models still lags behind that of regular ANNs

when applied to the complex event streams produced by neuromorphic
cameras [184]. Another line of research advocates moving away from the bio-
logical realism of SNNs in favor of exploiting the flexibility and ease of training
of traditional machine learning pipelines for vision. Early efforts [84, 85] re-
lied on unsupervised and hand-engineered methods for extracting features,
which were then paired with Nearest Neighbor and Support Vector Machine
classifiers for recognition. Encouraged by the success of frame-based deep
learning systems, researchers have increasingly focused on how to interface
events with standard neural networks for image processing effectively. The
vast majority of them converts event streams into dense three-dimensional
representations, which are then regarded as multi-channel images and pro-
cessed by traditional Convolutional Neural Networks (CNNs) [2, 92, 94, 112,
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185]. An overview of event representations typically used in such approaches
is provided in Section 2.2.2.

Nevertheless, although delivering state-of-the-art performance, these ap-
proaches do not take advantage of event streams’ sparse and asynchronous
nature. Inspired by the parallels between event streams and three-dimensional
point clouds, another research line studies the possibility of adapting point
cloud classification methods to event data. These approaches [102, 103, 186]
avoid densifying event information by relying on PointNet [61] and Point-
Net++ [60] architectures for sparse processing. Sekikawa et al. [102] extend
PointNet with a recursive computation scheme for asynchronous processing,
while Yang et al. [186] integrate Transformer self-attention [187] to learn
spatio-temporal subsampling. Finally, following the research on point cloud
processing, Graph Convolutional Neural Networks (GCNNs) have also been
recently applied to event data [90, 188] with the same goal of preserving
sparsity during computation. Either raw events [90], or aggregated features
describing small event neighborhoods [188], are first connected in a spatio-
temporal graph, and then standard GCNNs are used for processing.

Because of the novelty of these sparse processing architectures, even within
the deep learning community, extending these techniques to more compli-
cated visual tasks often necessitates a substantial amount of work. As a
result, frame-based architectures are commonly employed in learning-based
vision for event-based cameras. That is the case, for instance, of the object
detection task, where traditional CNNs are commonly used as backbone
architectures [104, 189, 190]. Li et al. [189] extend the image-based Faster
R-CNN detector [191] with an adaptive method to dynamically collect infor-
mation from several consecutive event frames based on the motion, while
Perot et al. [104] integrate recurrent convolutional layers [192] to improve the
network’s temporal consistency.

Methods presented in this thesis fall under frame-based architectures
for event-based processing. In Chapter 3, we focus on object detection and
propose an alternative to point clouds inspired methods for performing
sparse computation, which extends traditional CNNs with layers capable
of sparse and incremental computation. In Chapter 4, instead, we design
a learnable representation that effectively interfaces with CNN for various
tasks, including object classification, while in Chapter 5, we propose a general
procedure to effectively learn from simulated events and demonstrate its
effectiveness extensively in classification tasks.

optical flow prediction. The operating principle of event-based cam-
eras is intrinsically tied with motion [193]. Events are indeed triggered by
either changes in light intensity or by moving edges (in general, brightness
gradients) in the image plane. Several works take advantage of this property,
together with the very high temporal resolution of event-based cameras,
to accurately estimate the optical flow using ad-hoc algorithms. Benosman
et al. [194] propose to extend the Lucas-Kanade [195] algorithm by adapting
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Figure 2.14: Architecture of the EV-FlowNet [54] optical flow prediction network.
Event frames are processed by an encoder composed of four strided
convolutional layers, followed by a sequence of two residual blocks and
a decoder module composed of four upsample convolutional layers.
Residual connections connect encoder and decoder layers, as in a UNet
[203], and the output of each decoder layer is processed by a depthwise
convolution to obtain multi-scale predictions. These optical flows are
used to warp the input image and compute a photometric loss at
multiple scales. Figure taken from Zhu et al. [54]. Copyright ©2018 IEEE.

its constraint on differential flow brightness consistency. Gehrig et al. [110]
extend this approach to perform feature tracking by combining events with
standard cameras for increased robustness, while Orchard et al. [196] im-
plement a similar procedure by exploiting motion-sensitive receptive fields
extracted with an SNN. Several variants of the Lucas-Kanade algorithm have
also been proposed and evaluated against ground truth data by Rueckauer
and Delbruck [161].

A different line of research, first introduced by Benosman et al. [111] and
then also used by Mueggler et al. [197], proposes to estimate the optical flow
by locally fitting a plane over the spatio-temporal surface defined by coactive
events. A similar approach is proposed by Barranco et al. [198] who estimate
motion by tracking the objects’ contrast edges, either reconstructed from
events or localized from DAVIS intensity frames to reduce computation and
increase robustness. A phase-based method is then introduced by Barranco et
al. [199] that further improves robustness in highly textured areas. Alternative
solutions are that proposed by Brosch et al. [200], who make use of filter
banks sensitive to different motion speeds and orientations, the variational
optimization method introduced by Bardow et al. [162], and the expectation-
maximization framework proposed by Zhu et al. [201]. Another approach
is that of Gallego et al. [202], who propose to estimate the optical flow by
searching for the point trajectories that maximize contrast on the image plane.

With the rise of deep learning in event-based vision, many have attempted
to exploit deep learning mechanisms to estimate optical flow from events.
To alleviate the need for labeled data for training, Zhu et al. [54] propose to
leverage grayscale images taken from the same scene to provide supervision
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at training time. The flow estimated from event data over the interval between
two consecutive grayscale frames is used to warp the first frame forward in
time, and a photometric loss is computed to compare the estimated frame
against the second real one. By minimizing the difference in intensity between
frames, EV-FlowNet [54] learns to predict an accurate optical flow without
direct supervision. They achieve this by training on MVSEC [136], where
synchronized grayscale frames and event streams are provided thanks to the
DAVIS event camera sensor. A visual representation of the EV-FlowNet archi-
tecture is given in Figure 2.14 on the preceding page. Later works improve
unsupervised training by either imposing both brightness and smoothness
constraints [204], or by adding additional adversarial losses on top of the
photometric supervision [205]. In contrast, Ye et al. [56] extend this approach
by providing supervision directly from event-frames, thus removing the need
for synchronized grayscale images, while Zhu et al. [55] accomplish a similar
aim using a motion compensation loss. Recent approaches make use of ad-
ditional recurrent layers to incorporate temporal priors [206] or to provide
reliable predictions even in pixel locations where no event is received [207],
where most earlier approaches fail.

Since SNNs can naturally capture the spatio-temporal dynamics encoded in
the delay between successive events, several works have sought to exploit their
functioning to learn optical flow estimation. Orchard et al. [196] exploit the
synaptic delays in the response of motion-sensitive receptive fields to mimic
the canonical Lucas-Kanade algorithm [195], while Paredes-Valles et al. [208]
exploit biologically inspired learning rules to predict motion. An efficient
hardware implementation has also been proposed by Haessig et al. [209],
who demonstrate real-time performance on a TrueNorth [210] neuromorphic
chip. However, all these approaches make use of simple architectures to
mitigate training issues and rarely scale to complex visual tasks like the
MVSEC benchmark commonly used in deep learning approaches. To solve
these issues, Lee et al. [211] propose a hybrid approach that combines an
SNN encoder with a regular ANN decoder, outperforming some deep learning
approaches even in complex tasks such as the MVSEC.

In Chapter 4, we build upon the EV-FlowNet [54] architecture and show
that its performance can be improved by acting on the input representation.
We substitute its hand-engineered event encoding with our learnable Matrix-
LSTM layer and demonstrate that learning to encode events end-to-end,
without any extra modification, gives a relative increase in performance of
up to 30.76%.

motion and semantic segmentation. Because event-based cameras
naturally respond to motion, a logical application is to categorize objects by
how they move rather than by how they look. Indeed, while objects’ semantic
(i.e., appearance) is encoded incrementally and may require processing to be
reconstructed, their motion is more readily available in event-based streams
thanks to the very high temporal resolution. As a result, research in event-



2.2 deep learning approaches to event-cameras 39

Figure 2.15: Architecture of the EV-SegNet [105] semantic segmentation network.
The network is composed by a deep Xception-based encoder, followed
by a five-layers decoder with skip connections in between. A pixel-
wise cross-entropy loss is applied at the output of the network during
training, on just one scale. Figure taken from Alonso and Murillo [105].
Copyright ©2019 IEEE.

based vision has mainly concentrated on motion segmentation rather than
semantic segmentation.

Early works [212, 213] focus on distinguishing events caused by the camera
motion from those produced by objects with a known shape, independently
moving in the scene. When accessible, the ego-motion of the camera is also
used [214], as identifying events caused by objects moving in other directions
becomes easier. Another line of research relies on the concept of motion
compensation to solve the task in the absence of prior knowledge about the
motion or objects involved [114, 119–121]. In this case, motion is estimated,
without supervision, in such a way to produce sharp edges when warping is
applied to the event stream. Segmentation is performed by clustering events
according to the motion either jointly [120] or after [114, 119, 121] the motion
estimation process. Finally, a recent approach [88] proposes to connect events
in a spatio-temporal graph and perform motion segmentation by minimizing
an energy function through graph cuts [88].

While learning-based methods have also been used to accomplish motion
segmentation [215], their primary applications in this context entail solving
the semantic segmentation task, or the segmentation of objects based on their
visual appearance. The most common approach is to adapt conventional ANN

for frame-based semantic segmentation by converting event streams into grid-
like representations. The first deep neural network for event-based semantic
segmentation is due to Alonso and Murillo [105] who propose EV-SegNet,
depicted in Figure 2.15, an Xception-based [216] encoder-decoder network,
together with a semantic segmentation extension of the DDD17 [138] large
scale dataset. The same approach is adopted by Gehrig et al. [127], where the
network performance is improved by training on additional simulated data.
Zhang et al. [217] focus instead on multi-modal semantic segmentation and
propose to leverage event data under adverse conditions caused by accidents
in driving scenarios. Finally, Kim et al. [218] are the first to apply SNNs on
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this task. Common frame-based architectures, such as the FCN [219] and
DeepLab [220] architectures, are converted to perform spike-based processing,
but still achieve lower performance than traditional methods on the DDD17

dataset.
In Chapter 5 we follow the approach of using simulated data during

training proposed by Gehrig et al. [127]. However, we do not perform any
finetuning with supervision on real event data. Instead, we leverage unsu-
pervised domain adaptation methods to train a domain-invariant semantic
segmentation network that achieves good performance even on real camera
data.



3 A S Y N C H R O N O U S C O N V O L U T I O N A L
N E U R A L N E T W O R K S

The advantages of event-based cameras stem primarily from their ability
to sense the world through sparse and asynchronous updates. This char-
acteristic is very appealing in robotics since it opens up the possibility of
designing computer vision systems with very short latencies and low power
consumption. However, most vision systems, including deep neural networks,
are traditionally designed to operate on synchronous and spatially dense
representations, which vary fundamentally from the encodings provided by
event-based cameras. Nonetheless, learning-based approaches have managed
to achieve impressive results in event-based vision by collecting events into
image-like dense representations and then applying traditional deep learning
architectures with minor modifications [54, 92, 105, 112]. While this approach
has contributed to advancing the field of event-based vision, it also comes
at the cost of increased data redundancy, computational complexity, and
latency [25].

This chapter proposes a method for converting deep neural networks
trained on dense event-based representations into networks producing identi-
cal predictions but through incremental and asynchronous computation, thus
fully preserving events’ asynchronous and data-driven nature. We equip tra-
ditional max-pooling and convolution operations with an internal memory of
the previous layer’s output, as well as a set of update rules to asynchronously
and sparsely update their internal representation once an event occurs. The
resulting event-based layers are general and can be substituted to traditional
ones, after training, without major modifications. We benchmark these lay-
ers on classification and object detection tasks using several extensions of
publicly available datasets and additional recordings obtained in simulation.

3.1 introduction

The ability to extract meaningful features from unstructured visual repre-
sentations is at the heart of many fundamental techniques underlying visual
understanding in computer vision. To this extent, Convolutional Neural

This chapter is based on: Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo
Matteucci. “Asynchronous Convolutional Networks for Object Detection in Neuromorphic
Cameras.” In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). IEEE, June 2019. doi: 10.1109/cvprw.2019.00209. ©2019 IEEE. Best Paper Award at
the Second International Workshop on Event-based Vision and Smart Cameras.
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Networks (CNNs) have nowadays become the primary choice in many appli-
cations due to their natural ability to learn effective abstractions that make
reasoning easy to accomplish even in challenging visual tasks. That is the case
of many image-based visual tasks, such as object classification [220–223], ob-
ject detection [19, 191, 224], and semantic scene labeling [219, 225, 226], among
many others, but they have been recently extended also to non-Euclidean
domains such as manifolds and graphs [227, 228].

The flexibility and success of such neural architectures in many fields have
inspired the event-based vision community to apply these designs to event-
based data as well. These approaches typically collect events in batches with
fixed observation time or cardinality [106, 229] and then transform them into
dense tensors for processing. An overview of popular event representations
is provided in Section 2.2.2 on page 18. Since the resulting representation
is structurally equivalent to a multi-channel image, applying CNNs becomes
straightforward, and no modifications to the architectures or the learning
procedures are necessary. This simple approach has aided in enabling the em-
ployment of event-based cameras in a variety of visual applications, including,
but not limited to, semantic segmentation [105, 217], depth estimation [57,
58], high-speed video reconstruction [108, 126], as well as optical flow and
ego-motion estimation [54–56]. All these works combine traditional state-of-
the-art image-based architectures and tools with the benefits of event-based
cameras to solve vision tasks even under challenging motion and lighting
conditions. Despite all these advantages, however, collecting events into syn-
chronous and dense representations discards all the sparsity and temporal
resolution of the event stream, increasing latency, and computing complexity.
Indeed, CNNs are not designed to deal with sparse inputs, and they perform
computation even for parts of the scene that remain static throughout time.

As discussed in Section 2.2.1, a better approach in terms of efficiency is
to make use of Spiking Neural Networks (SNNs) [63, 184, 230]. They are,
indeed, very attractive in event based vision since dedicated neuromorphic
devices [231–233] enable their implementation at extremely low power and
latency regimes, opening the possibility to fully exploit all the benefits of
event-based cameras. However, despite these advantages, their complex dy-
namics makes training spiking models remarkably challenging, which puts
them at a disadvantage when compared to CNNs’ performance, especially in
complex vision tasks. Most Spiking Neural Networks (SNNs) solutions for
event-based data are limited to shallow networks, and thus, show limited
performance [184].

An ideal system for event-based processing should be capable of fully
exploiting cutting-edge vision architectures and training techniques while
also allowing for asynchronous, sparse, and data-driven computing. While
most of the research has sought reaching this objective by improving SNNs’
training [66, 182, 184, 218] to achieve the same accuracy of traditional CNNs,
very few have explored the opposite path of bringing SNNs’ efficiency within
the CNNs’ paradigm.



3.1 introduction 43

3.1.1 Main Contributions

This chapter takes a first step towards enabling asynchronous and sparse
computing in traditional CNNs, improving efficiency without sacrificing pre-
diction accuracy. We propose to achieve this by introducing a general pro-
cessing framework that takes inspiration from spiking networks to enable
conventional CNNs to perform asynchronous and data-driven computation.
At training time, we leverage traditional deep learning tools to train state-of-
the-art architectures on event-based representations, thus maximizing task
performance while avoiding typical SNNs’ restrictions. At deployment time,
the proposed method allows these pre-trained networks to be converted
into networks capable of performing incremental and sparse computation,
retaining event-based advantages during processing. Crucially, networks im-
plemented using the proposed procedure are asynchronous, meaning that
computation only occurs when a sequence of events arrives and only where
previous results need to be recomputed. More specifically:

• We propose improved event-based versions of the convolution and
pooling layers of CNNs. In contrast to conventional layers in which
features are stateless and always recomputed from scratch, these event-
based layers maintain a memory of the intermediate representation
produced at the previous iteration and update them locally only as
a consequence of incoming events. Only the features that depend on
values that changed in the preceding layer are recomputed, while the
remaining ones are directly taken from the internal memory. The e-
conv and e-max-pool layers are detailed respectively in Section 3.3.2 on
page 47 and Section 3.3.3 on page 51

1.

• We propose a novel event representation inspired by SNNs and a set
of update rules to update layer’s representations asynchronously as
time passes. A leaking mechanism acting independently on each layer
is used to allow past information to be forgotten, enabling features
computed in the past to fade away as their visual information starts to
disappear in the scene. We provide a description of this procedure in
Section 3.3.1 on page 46.

• We showcased the framework on the object detection task, proposing
the fcYOLE architecture, a fully-convolutional architecture making use
of these novel event-based layers and inspired by the YOLO [19] single-
shot detection network. The result is an asynchronous detector able to
perform computation only when requested and at different rates.

• In Section 3.5 on page 56 we benchmark fcYOLE on object recognition,
as well as several extensions of publicly available datasets for detection
and additional recordings obtained in simulation. The proposed event-
based networks can be used to produce an output only when new

1 Code available at https://github.com/marcocannici/async-ev-cnn

https://github.com/marcocannici/async-ev-cnn
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Figure 3.1: (a) Schematics of a LIF neuron [71]. (b) An simple circuit implementing
the spiking neuron on the left [234]. A low-pass filter converts spikes
into a current pulse I(t) that charges the capacitor C, implementing the
neuron’s internal state. When the voltage goes over a threshold ϑ, the
capacitor discharges, generating an output pulse δ. The integrate-and-
fire circuit’s voltage dynamics are analogous to that of an RC circuit.
Figures taken from Perez-Carrasco et al. [71] ©2013 IEEE, and Gerstner and
Kistler [234] ©2002 Cambridge University Press.

events arrive, dynamically adapting to the timings of the input, or to
produce results at regular rates by using a leaking mechanism to update
layers even in the absence of new events.

3.2 background

This section provides an overview of the operating principles and the primary
computing units of SNNs. Although we do not explicitly implement a spiking
network, these concepts are used throughout the chapter to design both a
novel bio-inspired event representation and the proposed event-based layers
for asynchronous computation.

biological model of a neuron. Neuronal action potentials, or spikes,
constitute the primary means of communication between neurons in the
biological brain. Spikes from other neurons travel along their axons and
reach the post-synaptic neuron in unique sections known as synapses. There,
information is chemically conveyed by neurotransmitters that modulate and
amplify signals by inducing a variation in the membrane potential of the
receiving neuron. When the sum of these potentials reaches a particular
threshold, the neuron fully discharges, sending out a spike and entering a
refractory phase during which no additional output spike can be produced.
If no spike is received, the excitation leaks out, reducing the membrane
potential over time until a resting state is reached [71, 235].

leaky-integrate-and-fire (LIF) neuron. A Spiking Neural Network
(SNN) is a system of artificial neurons that attempts to imitate neuronal
biological activity as closely as possible. Over the years, several models of
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the spiking neurons have been proposed [234, 236–239]. The simplest, but
yet most widely used, is the Leaky Integrate-And-Fire (LIF) neuron [236].
Figure 3.1a on the preceding page, taken from Perez-Carrasco et al. [71],
depicts a schematics of its primary components along with an equivalent
electronic circuit [240]. A spiking neuron is characterized by an internal state
x′j that continuously evolves over time. Spikes y′i coming from pre-synaptic
neurons cause a positive or negative variation ∆x′ on the neuron’s state
proportionate to the synaptic weight w′

ij connecting the two. When x′j exceeds
one of the predefined thresholds ±xthj , the neuron generates an output spike
y′j, the sign of which depends on the value x′j accumulated at that time
instant, and then resets its state to a resting value xrest. The internal state is
also continuously subject to a leak, characterized by a constant rate |xth/TLj |,
which strives x′j towards the resting state if no input spike is received. Finally,
the rate of fire is also typically limited by a refractory period TRj during
which spikes can be accumulated but not produced.

This simple description clearly highlights the connection between SNNs and
biological systems. Some of these concepts, such as the thresholding-based
spike generation and refractory states, have also influenced the design of
early event-based camera models and motivated their use for processing
events. However, traditional learning techniques based on backpropagation
cannot be directly applied to spiking neurons. Indeed, SNNs operate on
discrete spikes rather than smoothly differentiable functions of their inputs,
which makes end-to-end training very challenging to accomplish. Although
several solutions to these learning issues have been proposed [66, 182, 184,
218], the difficulty in training SNNs remains the primary factor limiting their
effectiveness and applicability in event-based vision.

3.3 event-based fully convolutional networks

Conventional CNNs for video analysis treat every batch of frames indepen-
dently and recompute all the feature maps entirely and from scratch, even if
consecutive frame sequences differ from each other only in small portions.
These architectures are often used for event-based processing by transform-
ing event streams into a series of image-like representations similar to a
video stream. Besides being a significant waste of power and computation,
this approach does not match the asynchronous and sparse visual encoding
produced by event-based cameras.

Inspired by SNNs’s operational principles, we propose to alleviate these
issues by enabling convolutional neural networks to perform incremental
computation. First, we formulate a new event-based representation in which
each pixel operates similar to a LIF neuron, accumulating incoming events
incrementally and asynchronously while deactivating during time through
a leaking mechanism. Then, instead of discarding the output of each layer
after computation, we keep track of the networks’ feature maps and use them
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for subsequent processing, only recomputing them locally in pixel locations
affected by incoming events.

Layers maintain their state over time and communicate with each other
with events, signaling where feature maps have been updated. We enable
the leaking mechanism to directly act on each layer, allowing features to
fade away as visual information starts to disappear in the input surface. We
design a set of lightweight update rules that allow layers to be updated as
time passes without recomputing feature maps from scratch.

The resulting architecture yields the same results of a network trained
on synchronous frames extracted with the proposed event representation.
As a result, training can be performed using any gradient-based learning
procedure, taking full advantage of state-of-the-art learning tools. However,
differently from a standard CNN, the network, once deployed on the pro-
posed event-based layers, does not need synchronized inputs but can operate
asynchronously, dynamically adapting to the rate on incoming events.

In Section 3.4 on page 52, the proposed framework is employed to de-
tect objects captured by an event-based camera. Nonetheless, with certain
constraints outlined in the next sections, any convolutional architecture can
possibly be built to perform asynchronous event-by-event processing. A CNN

trained to process frames can indeed be easily converted into an event-based
network without any modification on its layers composition, and by using
the same weights learned while observing frames, maintaining its output
unchanged.

3.3.1 Leaky Event-Based Representation

The basic component of the proposed architecture is a procedure able to
accumulate events. Sparse events generated by the neuromorphic camera
are integrated into a leaky surface, a structure that takes inspiration from the
functioning of Spiking Neural Networks (SNNs) to maintain a memory of
past events. A similar mechanism has also been proposed by Cohen [41].

Every time an event with coordinates (xe, ye) and timestamp t is received,
the corresponding pixel of the surface is incremented of a fixed amount ∆incr.
At the same time, as time passes, the whole surface is also decreased by a
quantity ∆leak proportional to the time elapsed since the previous event. More
formally:

qt
xs,ys

= max(pt−1
xs,ys

− ∆leak, 0) (3.1)

pt
xs,ys

=

qt
xs,ys

+ ∆incr i f (xs, ys) = (xe, ye)t

qt
xs,ys

otherwise
, (3.2)

where pt
xs,ys

is the pixel value in position (xs, ys) of the leaky surface and
∆leak = λ · (tst − tst−1), with λ a constant scalar. Pixel values are prevented
from becoming negative by means of the max operator. Notice that the effects
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of ∆leak and ∆incr are related: ∆incr determines how much information is
conveyed by every single event, whereas ∆leak, through λ, defines the decay
rate of activations. Indeed, given a certain choice of these parameters, similar
results can be obtained using, for instance, a higher increment ∆incr combined
with a higher temporal λ. For this reason, we fix ∆incr = 1, and we vary only
λ based on the dynamics of the input event stream.

Similar procedures capable of maintaining time resolution have also been
proposed, such as those that make use of exponential decays [41, 84] to
update surfaces and those relying on histograms of events [109]. The concept
of time surface has also been introduced in [84] where surfaces are obtained by
associating each event with temporal features computed applying exponential
kernels to the event neighborhood. Extensions of this procedure making use
of memory cells [85] and event histograms [54] have also been proposed. We
discuss these event representations in detail in Section 2.2.2 on page 18.

Although these event representations may better describe complex scene
dynamics, we make use of a simpler formulation to derive a linear depen-
dence between consecutive surfaces. This choice allows us to design the
event-based layers discussed in the following sections, in which time decay is
applied to every layer of the network independently.

leaky surface layer. We embed this procedure as an actual layer of the
proposed framework, i.e., a layer that uses events to signal the occurrence
of particular conditions (e.g., the update of a pixel) on top of its normal
operation. To allow subsequent layers to locate changes inside the surface,
the following information, together with the state of the reconstructed leaky
frame, is also forwarded to the next layer:

i. the list of incoming events, to signal where new information needs to
be processed;

ii. ∆leak, which is directly sent to all the subsequent layers, to update
feature maps at the new time instant;

iii. the list of surface pixels that have been reset to 0 by the max operator
in Equation 3.1 on the facing page, as it will be clarified later in the
section.

3.3.2 Event-based Convolutional Layer (e-conv)

The event-based convolutional (e-conv) layer we propose uses events to deter-
mine where the input feature map has changed with respect to the previous
time step and, therefore, which parts of its internal state, i. e., the feature map
computed at the previous time step, must be recomputed and which parts
can be reused.

We use a procedure similar to the one described in the previous section to
let features decay over time. However, while ∆leak acts directly and identically
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on every pixel of the input representation, its effect may change in deeper
layers based on the feature location. Indeed, the transformations applied by
previous layers and the composition of their activation functions may change
how ∆leak acts in different parts of the feature map. For instance, the decrease
of a pixel intensity value in the input surface may cause the value computed
by a certain feature in a deep layer to decrease, but it could also cause
another feature of the same layer to increase. Therefore, the update procedure
must also be able to accurately determine how a single bit of information is
transformed by the network through all the previous layers in any spatial
location. We face this issue by storing an additional feature map, F(n), and
by using a particular class of activation functions in the hidden layers of
the network. In the following, we provide an intuition of the functioning
of the e-conv layer by explicitly deriving its update rules for the first two
convolutional layers of a CNN. Then, we generalize these update rules by
induction to every layer of the network.

update rules derivation. Let us consider the first layer of a CNN, which
processes the leaky surfaces described in the previous section through a
convolution of filters W, bias b, and activation function g(·). The computation
performed on each receptive field is:

yt
ij(1) = g

(
∑
h

∑
k

xt
h+i,k+jWhk(1) + b

(1)

)
= g(ỹt

ij(1)), (3.3)

where, with abuse of notation, h, k select a pixel xt
h+i,k+j in the receptive field

of the output feature (i, j) and its corresponding value in the kernel W. The
subscript (1) indicates the network’s hidden layer; in this case, the first after
the leaky surface layer.

When a new event arrives, the leaky surface layer decreases all the pixels
by ∆leak. Therefore, a pixel not directly affected by the event becomes xt+1

hk =

xt
hk − ∆t+1

leak, with ∆t+1
leak > 0. At time t + 1 Equation 3.3 becomes:
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h
∑

k
Whk(1)

)
.

(3.4)

If g(·) is (i) a piecewise linear activation function g(x) = {αi · x if x ∈ Di},
as ReLU [241] or Leaky ReLU [242], and we assume that (ii) the updated
value does not change which linear segment of the activation function the
output falls onto and, in this first approximation, (iii) the leaky surface layer
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does not restrict pixels using max(·, 0), then Equation 3.4 on the facing page
can be rewritten as it follows:

yt+1
ij(1)

= yt
ij(1) − ∆t+1

leakαij(1) ∑
h

∑
k

Whk(1) , (3.5)

where αij(1) is the coefficient applied by the piecewise function g(·) which
depends on the feature value at position (i, j). The equation thus obtained
enables updating the feature map computed at the previous step as time
passes, without having to recompute it from scratch. Its computation is
much lighter than a convolution. Indeed, the summation ∑h ∑k Whk(1) can
be precomputed, being constant after training, and αij(1) is also likely to
remain the same through time. Computing Equation 3.5 is thus equivalent
to an element-wise product with a scalar ∆t+1

leak followed by the element-wise
difference between two matrices, which can both be highly parallelized.

Whenever the previous assumptions are not satisfied, i.e., when a new
event arrives in (i, j)’s receptive field or its αij(1) has changed, the feature yij(1)
is recomputed by applying the filter W locally over xt+1.

Consider now a second convolutional layer attached to the first one. Its
output can be rewritten as
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yt+1
i+h,j+k(1)

Whk(2) + b
(2)

)

= g

(
∑
h,k

(
yt

i+h,j+k(1)
− ∆t+1

leakαi+h,j+k(1) ∑
h′,k′

Wh′k′
(1)

)
Whk(2) + b

(2)

)

= yt
ij(2) − ∆t+1

leakαij(2) ∑
h,k

(
αi+h,j+k(1) ∑

h′,k′
Wh′k′

(1)

)
Whk(2)

= yt
ij(2) − ∆t+1

leakαij(2) ∑
h,k

Ft+1
h+i,k+j(1)

Whk(2) = yt
ij(2) − ∆t+1

leakFt+1
ij(2)

,

(3.6)

where we combined Equation 3.5 and Equation 3.3 on the preceding page,
and assumed once again the same conditions over g(·) and αij(2) .

The previous equation can be extended by induction as it follows:

yt+1
ij(n)

= yt
ij(n) − ∆t+1

leakFt+1
ij(n)

,

with Ft+1
ij(n)

= αij(n) ∑
h

∑
k

Ft+1
i+h,j+k(n−1)

Whk(n) if n > 1 , (3.7)

where the subscript (n) indicates any convolutional layer of the network,
and Fij(n) expresses how visual inputs are transformed by the network in
every receptive field (i, j), i. e., the composition of the previous layers acti-
vation functions. Since Fij(n) only depends on the network’s parameters W(n)
and αij(n) , up to the current layer, the same considerations for computing
Equation 3.5 also apply in this case.
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Figure 3.2: The structure of the e-conv layer. The internal state and the update
matrix are recomputed locally only where events are received (green
cells) whereas the remaining regions (yellow cells) are directly obtained
from the previous state.

Given this formulation, the max operator applied by the leaky surface
layer can be interpreted as a ReLU, and Equation 3.5 on the previous page
becomes:

yt+1
ij(1)

= yt
ij(1) − ∆t+1

leakαij(1) ∑
h

∑
k

Ft+1
i+h,j+k(0)

Whk(1) , (3.8)

where the value Fi+h,j+k(0) is 0 if the pixel xi+h,j+k ≤ 0 and 1 otherwise.
Notice that Fij(n) needs only to be updated when the corresponding feature

changes enough to make the activation function use a different coefficient
α, e. g., from 0 to 1 in case of ReLU. In this case, F(n) is updated locally in
correspondence of the change by operating on the update matrix F(n−1) of
the previous layer and by applying Equation 3.7 on the preceding page only
for the features whose activation function has changed.

internal state and recursive computation. As in every layer of
the proposed framework, events are used to communicate the change to
subsequent layers so that their features and update matrix can be updated
accordingly. The internal state of the e-conv layer, therefore, comprises the
feature maps yt−1

(n) and the update values Ft−1
(n) computed at the previous

time step. The initial values of the internal state are computed by making
full inference on a blank surface; this is the only time the network needs
to be executed entirely. As a new sequence of events arrives, the following
operations are performed (see Figure 3.2):

i. Update Ft−1
(n) locally on the coordinates specified by the list of incoming

events (Equation 3.7). Note that we do not distinguish between actual
events and those generated by the change of slope α in the linear
activation function.
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ii. Update the feature map y(n) with Equation 3.7 on page 49 in the
locations which are not affected by an event, and generate an output
event where the activation function’s coefficient has changed after the
update.

iii. Recompute y(n) by applying W locally in correspondence of the incom-
ing events and output which receptive field has been affected through
new output events.

iv. Forward the feature map and the events generated in the current step
to the next layer.

3.3.3 Event-based Max Pooling Layer (e-max-pool)

In a max-pooling layer, the location of the maximum value in each receptive
field is likely to remain the same over time. Hence, an event-based pooling
layer can exploit this property to avoid recomputing the position of maximum
values every time.

The internal state of an event-based max-pooling (e-max-pool) layer is
composed by a positional matrix It

(n). This matrix has the same shape as the
layer’s output feature map, and it stores the position of the maximum value in
each receptive field. Every time a sequence of events arrives, the internal state
It
(n) is sparsely updated by only recomputing the position of the maximum

values for the receptive fields affected by an incoming event. The internal
state is then used both to build the output feature map and to produce the
layer’s update matrix Ft

(n), by fetching the previous layer on the locations
provided by the indices It

ij(n)
. For each e-max-pool layer, the indices of the

receptive fields where the maximum value changes are communicated to the
subsequent layers so that their internal states can be updated accordingly.
This mechanism is depicted in Figure 3.3 on the next page.

Notice that the leaking mechanism acts differently in distinct regions of
the input space. Pixel features inside the same receptive field can indeed
decrease over time with different rates as their update values Ft

ij(n)
could

be different. Therefore, even if no event has been detected inside a region,
the position of its maximum value might change as time passes. However,
let us consider a pixel location (i, j)∗ in the previous layer’s feature map
having (i) the minimum update rate among features in a receptive field R, i.e.,
(i, j)∗ = argminhk∈R(Fhk(n−1)

), while (ii) also corresponding to the maximum
value in R, i.e., (i, j)∗ = argmaxhk∈R(yhk(n−1)

). This feature will decrease slower
than all the others in R, and thus its value will always remain the maximum
overtime. In this case, its index It

(n)R
does not need to be recomputed until

a new event arrives in R. We call these receptive fields persistent maximum
locations.

Whenever a new event arrives at the e-max-pool layer, the following opera-
tions are performed:
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Figure 3.3: The structure of the e-max-pooling layer. The location It
(n) of the maxi-

mum value in each receptive field is only recomputed for those regions
affected by incoming events (green cells). The output is then obtained by
fetching the layers’ input at those locations.

• The positional matrix I(n) is updated by computing the position of the
maximum value in all receptive fields R that are either affected by
incoming events or are not persistent maximum locations.

• The list of persistent maximum locations is updated if new ones are
discovered after the update.

• The matrices F(n−1) and y(n−1) are fetched at the locations of maximum
values It

(n) and forwarded to the next layer.

• All incoming events are forwarded to the next layer, but the events’
coordinates are substituted with that of the receptive field R each event
belongs to. Duplicate events arising from this re-indexing are removed
before forwarding.

3.4 always-on event-based object detection

Object detection [147–149] is one of the most challenging problems in com-
puter vision as it involves both semantic understanding and localization
capabilities. Early deep learning methods have tackled the challenge in a
multi-stage fashion. After predicting region proposals containing an object,
a classification network infers the object category, and a second regression
network predicts the object’s size and position, i.e., the bounding box. The
R-CNN [243] model is the first architecture of this sort to be proposed in
the literature. A number of later works, such as the spatial pyramid pooling
(SPP)-Net [244], the Fast [245] and Faster [191] R-CNNs, as well as the region-
based fully convolutional network (R-FCN) [246], offer several refinements to
this multi-stage design. Nevertheless, employing these pipelines in real-world
applications is often a challenge. Each stage must be trained independently
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and, at deploy time, it needs to wait for the previous stage prediction to
be completed, which adds to the overall time required and becomes the
bottleneck in real-time applications [19].

One-stage frameworks offer a solution to this problem. Instead of optimiz-
ing each task separately, these architectures directly regress and classify both
bounding boxes coordinates and class probabilities with a single network
pass, significantly lowering the time expense. Pioneer works on this category
are the YOLO [19] and SSD [224] networks, which inspired later works to
improve robustness and efficiency of this kind of architectures [247–250].

Despite the success of deep learning networks in this field, very few works
propose to detect objects from event-based camera streams [189, 251, 252].
The primary obstacle that limited the research can be attributed to the lack of
large-scale datasets, which constrained the design and complexity of early
works in this area2. In the remainder of this chapter, we propose to exploit
the proposed event-based layers to design an asynchronous network for
event-based object detection. The resulting architecture can perform either
batch-based or event-by-event computation, detecting objects as soon as
enough information is accumulated. In the following, we first review the
YOLO [19] object detector, as it constitutes the foundation of our architecture,
and then present the proposed YOLE architecture.

3.4.1 YOLO: You Only Look Once

YOLO is a real-time object detection network proposed by Redmon et al. [19].
Its single-stage design is the result of combining a feedforward single-branch
architecture, similar to traditional CNNs for object classification, with a novel
prediction scheme and training loss. The core idea is detailed in Figure 3.4a
on the next page.

operating principles. YOLO divides the input image into a grid of
S × S cells, each responsible for predicting the object, if present, centered
on that cell. Each of these regions is associated with a fixed number B of
predicted bounding boxes proposals (position and size), their confidence
scores Pr(Object) ∗ IOUtruth

pred , and a class probability distribution Pr(Classi |
Object), shared among all boxes. The predicted confidence score reflects how
much the network is confident that an object is actually contained in each
predicted box, and it is set to be equal to the intersection-over-union between
the predicted box and the ground truth during training. The network is thus
asked to predict its own performance, making prediction easier to accomplish.

2 At the time this research was conducted, very few prior works [189, 251, 252] proposed
to tackle object detection with events, and no proper object detection dataset was publicly
available. With the recent release of large-scale datasets for event-based detection [104, 135],
the interest in this area is constantly increasing, and new event-based solutions [104, 189, 190]
are being proposed. Refer to Section 2.2.4 on page 35 for an overview of recent datasets and
architectures.
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S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

(a)

1. Resize image.

2. Run convolutional network.

3. Non-max suppression.

Dog: 0.30

Person: 0.64

Horse: 0.28

(b)

Figure 3.4: (a) The YOLO’s bounding box prediction scheme. The image is first
divided into a grid of S × S cells, each predicting: a class probability
(depicted on the bottom) and a set of boxes proposals, together with
their confidence score (depicted on top with thickness proportional to
the confidence). (b) The final set of predictions is obtained through non-
maximum suppression and confidence thresholding. Figures taken from
Redmon et al. [19]. Copyright ©2016 IEEE.

Indeed, the confidence score can directly be used to discriminate between
valid and invalid proposals, simplifying the proposal selection process to
simple thresholding over the confidence scores. At test time, the object class
is finally computed as

Pr (Classi | Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred , (3.9)

by combining the cell’s conditional probability Pr (Classi | Object) with the
objectness Pr(Object).

implementation. During training, the following multi-part loss is opti-
mized:

L = λcoord

S2

∑
i=0

B

∑
j=0

1obj
ij

[
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2
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+
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∑
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(pi(c)− p̂i(c))

2 .

(3.10)

Every cell i ∈ S2 is associated with 5 ∗ B + C different values. The first
set entails the j = 1, . . . , B − 1 bounding boxes proposals predicted by each
cell, each defined by 5 values: the bounding box center (xij, yij) relative to
the cell position, its size (hij, wij), and the confidence Cij. The last set of C
values corresponds to the predicted class probabilities pi(c). This multi-value



3.4 always-on event-based object detection 55

16

64

64

32

32

32

Conv Layer
5x5x16

Maxpool Layer
2x2

Conv Layer
5x5x32

Maxpool Layer
2x2

2048
1024

Fully
connected

Fully
connected

64

16

16

Conv Layer
5x5x32

Maxpool Layer
2x2

128

8

8

Conv Layer
5x5x32

Maxpool Layer
2x2

256
4

4

Conv Layer
5x5x32

Maxpool Layer
2x2

20 = C + 5 B

4

4

- 4 x 4 regions
- B = 2 bounding
  boxes per region
- C = 10 classes

Fully
connected

Leaky
Surface

Dense
Async

Figure 3.5: The YOLE detection network used to detect MNIST-DVS digits. The
input 128 × 128 surfaces are divided into a grid of 4 × 4 regions at the
output of the network, which predicts 2 bounding boxes and 10 class
categories each.

prediction is accomplished in a single forward pass by directly predicting
a dense S × S × (5B + C) output through standard convolutional and fully
connected layers.

During training, for each cell, only the proposal having the maximum IOU
with a ground truth box is considered responsible for a prediction, indicated
with single subscripts (hi, yi, wi, hi) in the loss function and with the indicator
value 1obj

ij = 1. This proposal is asked to match the ground truth’s values

and predict a confidence score of Ĉij = 1 (first three terms of the loss). All
remaining proposals are trained instead to minimize the predicted confidence
(Ĉij = 0), while no constraint is enforced on their size and location.

By combining a proposal-based network with a multi-value regression loss,
YOLO is capable of predicting the position, size, and class of all the objects in
the scene with just a single forward pass of the network. Basic thresholding
over the confidence scores and a non-maximum suppression refinement step
are introduced during testing to remove any duplicate prediction, as shown in
Figure 3.4b on the facing page. The network can process images in real-time
at 45 fps, although simplified versions can even reach 155 fps [147].

3.4.2 YOLE: You Only Look at Events

Motivated by YOLO’s fast prediction rates, we propose combining its single-
stage design with our leaky surface layer to obtain an object detection network
for event cameras. We call this approach "YOLE: You Only Look at Events."
Networks thus obtained are fully-differentiable, meaning that we can exploit
the YOLO’s training procedure and backpropagation-based optimizer to
learn to detect objects from event streams end-to-end.

We design two versions of this architecture. The first, YOLE, only partially
exploits the proposed event-based framework as it also makes use of dense,
not even-based, layers at the end of the network. We use this model as a
reference to highlight the strengths and weaknesses of the event-based layers
described in Section 3.3 on page 45. We extend this first version to a fully
convolutional variant named fcYOLE and implement its architecture entirely
with the proposed event-based layers as detailed below.
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features and
F(n) matrices
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Surface

Figure 3.6: fcYOLE: a fully-convolutional detection network based on YOLE. Fully-
connected layers are replaced with 1 × 1 convolutions for directly pre-
dicting bounding box proposals.

yole network. The YOLE network combines the leaky surface proposed
in Section 3.3.1 with a simpler version of the YOLO network [19]. Its ar-
chitecture is depicted in Figure 3.5 on the preceding page. YOLE processes
128 × 128 surfaces, it predicts B = 2 bounding boxes for each region and clas-
sifies objects into C different categories. We follow the architectural designs
of YOLO and add fully-connected layers at the end to expand the receptive
field of cells in the output layer. This design choice enables them both to
handle objects whose bounds exceed that of the cell and to reason using cues
from the entire scene. We train the network on traditional layers and then
reuse its weights within a network having the same structure but composed
of the proposed e-conv and e-max-pool layers. Fully-connected layers are kept
as dense, not event-based, operations in this version of the network.

fcyole network. Fully-connected layers cannot be easily extended to
perform event-based processing. Indeed, every one of their output values
depends on all the values of the input feature map. If just one input pixel is
affected by an event, all the layer’s output predictions must be completely re-
computed. To address this issue, we propose replacing the last fully-connected
layers with convolutional ones, obtaining what is generally known as a fully-
convolutional architecture [219]. In particular, as depicted in Figure 3.6, we
substitute the last set of fully connected layers with 1 × 1 convolutions that
directly map feature maps into the bounding boxes predictions. As the net-
work thus obtained is only composed of convolutional and max-pooling
layers, we can be easily convert it into a fully event-based variant using e-conv
and e-max-pool layers only. We call this variant fully-convolutional YOLE, or
fcYOLE.

3.5 experiments

In this section, we provide details on the set of experiments we designed
to test the proposed framework and detection networks. We begin by de-
scribing the custom detection benchmarks we created using available object
recognition datasets. The performance of the proposed architectures is then
discussed.
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3.5.1 Datasets

At the time of this study, only a few event-based datasets for deep learn-
ing applications were publicly available in the literature, the most pop-
ular ones being: N-MNIST [116], MNIST-DVS [128], CIFAR10-DVS [189],
N-Caltech101 [116] and POKER-DVS [128]. All of these datasets, except for
POKER-DVS, are derived from their original frame-based versions [141, 143,
253] by capturing images displayed on a monitor with an event camera while
moving the camera itself or the images to trigger events. Among these, N-
Caltech101 is the only dataset providing bounding boxes for object detection.
A comparison between these datasets is provided in Section 2.2.3 on page 27.

To benchmark the proposed detection networks in different scenarios,
ranging from simple to complex, we propose extending available object
classification datasets into object detection variants. These are created by
combining multiple samples from the N-MNIST and MNIST-DVS datasets,
obtaining the Shifted N-MNIST and Shifted MNIST-DVS extended datasets,
and by providing bounding boxes for the original POKER-DVS, resulting
in OD-Poker-DVS. A similar dataset, Blackboard MNIST, is also obtained in
simulation by recording digits written on a blackboard. In the following, we
go through how these datasets are created in further detail. Samples from
each dataset are provided in Figure 3.7 on the next page.

shifted n-mnist The N-MNIST [116] dataset is a conversion of the
popular MNIST [141] image dataset for computer vision. We enhanced this
collection by building a slightly more complex set of recordings. Each new
sample is composed of either one (Shifted N-MNIST v1) or two (Shifted N-
MNIS v2) N-MNIST samples placed in random non-overlapping locations of
a bigger 124 × 124 field of view.

As a preprocessing step, we generate bounding boxes for each N-MNIST
digit individually. We first compute a sequence of surfaces as detailed in
Section 3.3.1 on page 46, and then remove noisy locations by considering
only non-zero pixels having at least other ρ active pixels within a circle of
radius R around them. Then, with a custom version of the DBSCAN [254], we
aggregate pixels into a single cluster to compute a bounding box that tightly
frames the digit. We used ρ = 3, R = 2, and set a threshold minsur f = 10 to
filter out small bounding boxes extracted in correspondence of low events
activities.

To test the robustness of the proposed models, we further extend this
dataset by introducing additional noise patterns. Following the procedure
used to design the Cluttered Translated MNIST dataset [255], we add five 8 × 8
fragments of non-target objects (Shifted N-MNIST v2fr) cropped from random
N-MNIST digits in random locations, and 200 additional random events per
leaky frame (Shifted N-MNIST v2fr+ns).



58 asynchronous convolutional neural networks

Shifted N-MNIST

v1 v2 v2fr v2fr+ns
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OD-Poker-DVS

Blackboard-MNIST

Figure 3.7: Examples of samples from the proposed detection datasets.
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Each version of the dataset contains 60, 000 training and 10, 000 testing
samples, as in the original N-MNSIT dataset. In Figure 3.7 on the preceding
page we illustrate one sample for each of the four proposed variants.

shifted mnist-dvs MNIST-DVS [128] offers a set of recordings similar
to that of N-MNIST [116]. However, differently from N-MNIST, digits are
recorded at three different scales, namely, scale4, scale8, and scale16. We use a
similar procedure to obtain Shifted MNIST-DVS recordings. We first extract
bounding boxes with the same procedure detailed before and then place them
in a 128 × 128 field of view by combining samples from the three different
scales. In a given sample, four different scales combinations are possible: (i)
three scale4 digits, (ii) two scale8 digits, (iii) two scale4 digits mixed with
one scale8 digit, and (iv) one scale16 digit placed in random locations of the
field of view. The overall Shifted MNIST-DVS is composed of 30, 000 samples
containing these four possible configurations.

od-poker-dvs The Poker-DVS [128] dataset is a small collection of neuro-
morphic recordings obtained by quickly browsing custom-made poker card
decks in front of a DVS camera for 2 − 4 seconds. The dataset is composed
of 131 samples containing pips of four possible categories (spades, hearts,
diamonds, or clubs) extracted from three decks recordings. Single pips are
extracted using an event-based tracking algorithm that follows pips to extract
31 × 31 motion-compensated samples for classification.

With OD-Poker-DVS we extend its scope to object detection. To do so, we
compute pips’ bounding boxes within the original uncut deck recordings
using the tracking algorithm [128] provided with the original dataset. We then
split these recordings, following the procedure of Stromatias et al. [183] by
dividing the sections containing visible digits into a set of shorter examples,
each about 1.5 ms long. The final detection dataset is composed of 292 small
examples, which we divided into 218 training and 74 testing samples.

blackboard-mnist We use the DAVIS simulator released by Mueggler
et al. [165] to build our own set of synthetic recordings. The resulting dataset
consists of a number of samples showing digits written on a blackboard in
random positions and with different scales. We preprocess a subset of images
from the original MNIST dataset by removing their background and making
them look like they were written with chalk. A random set of digits is then
placed on a virtual blackboard, and the simulation is finally run, moving
the virtual event camera in front of the blackboard to obtain event-based
recordings together with bounding boxes of every visible digit. The rendering
setup is shown in Figure 3.8 on the following page.

We built three sub-collections of recordings with increasing levels of com-
plexity (easy, medium, and hard) which we then merged together to obtain
the final dataset. In the easiest version, we place three digits of a fixed dimen-
sion (roughly corresponding to the middle scale of MNIST-DVS samples) in
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(a) (b)

Figure 3.8: (a) The 3D Blender [167] scene used to generate the Blackboard MNIST
dataset. The camera moves in front of the blackboard along a straight
trajectory while following an hidden focus object that moves on the
blackboard’s surface, synchronized with the camera. The camera and its
trajectory are depicted in green, the focus object is represented as a red
cross and, finally, its trajectory is depicted as a yellow line. (b) The three
types of focus trajectories.

the central region of the blackboard and use a single type of camera trajectory,
moving the camera from right to left in a straight line. We collected a total of
1, 200 samples (1, 100 training and 100 testing).

The medium difficulty features more variability in the number and di-
mensions of the digits, and the types of camera movements. The portion of
the blackboard on which digits are placed varies as well and can cover any
region of the blackboard, including the edges. Camera motion, either from
left-to-right or in the opposite direction, can be of the three kinds shown
in Figure 3.8b. Finally, the number and dimensions of the digits are chosen
following three possible configurations, similarly to the Shift MNIST-DVS
dataset: either six small digits (with sizes comparable to scale4 MNIST-DVS
digits), three intermediate-sized digits (comparable to the MNIST-DVS scale8),
or two large digits (comparable to the biggest scale of the MNIST-DVS dataset,
scale16). We generate 1, 200 recordings with the same split structure as the
previous set.

Finally, the hardest difficulty extends the second and third configuration
described before by randomly resizing digits to a variable size spanning from
the original configuration size down to the previous scale. A total of 600 new
samples (550 training, 50 testing) are generated, 300 of them containing three
digits each and the remaining consisting of two digits with variable size.

n-caltech101 The N-Caltech101 [116] collection is the only dataset we
use which already comes with bounding boxes annotations. We split the
dataset into 80% training and 20% testing samples using a stratified split.
Since no ground truth bounding boxes are available for the background class,
we do not use this category in our experiments.
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Table 3.1: Classification performance (accuracy %) of YOLE against previous state-
of-the-art synchronous and asynchronous architectures.

Asynch. Classifier N-MNIST N-Caltech101

H-First [140] ✓ spike-based 71.2 5.4

HOTS [84] ✓ histogram-based 80.8 21.0

Gabor-SNN [85] ✓ linear SVM 83.7 19.6

HATS [85] ✓ linear SVM 99.1 64.2

YOLE (Ours) ✓ MLP 94.9 64.9

Phased LSTM [258] MLP 97.3 -

3.5.2 Experiments Setup

Event-based datasets, especially those based on MNIST, are simpler than
those typically used to train image-based YOLO architectures [19]. Therefore,
we design the MNIST object detection networks taking inspiration from
the simpler LeNet [141] model composed of 6 conv-pool layers for feature
extraction. Both YOLE and fcYOLE share the same structure up to the last
regression and classification layers.

We adopt a more advanced design to detect objects on N-Caltech101, taking
inspiration from the VGG16 architecture [222]. VGG16 is a feedforward
classification network made of five consecutive blocks of convolutional layers
separated by max-pooling. We simplify this structure utilizing only one
convolution per block, obtaining better performance. Finally, we set the
dimensions of the last fully connected layer to produce a grid of 5× 7 regions
predicting B = 2 bounding boxes and 100 classes each. As in the original
YOLO architecture, we use Leaky ReLU in the hidden layers and a linear
activation in the last one.

Following Redmon et al. [19], in all experiments, we first pre-train the first 4
convolutional layers to classify target objects, while we use a Xavier initializa-
tion [256] to initialize the remaining ones. All networks are trained optimizing
the multi-objective loss in Equation 3.10 on page 54 using Adam [257], learn-
ing rate 10−4, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The batch size is chosen
depending on the dataset to fill GPU memory optimally: 10 for Shifted N-
MNIST, 40 for Shifted MNIST-DVS, and N-Caltech101, 25 for Blackboard
MNIST, and 35 for Poker-DVS. Early-stopping is applied to prevent overfitting
using validation sets of the same size as the test set.

3.5.3 Experimental Results

classification performance of yole. We first benchmark the object
recognition capabilities of the proposed YOLE detection architecture on the
N-MNIST [116] and N-Caltech101 [116] datasets. We compute the classifica-
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Table 3.2: YOLE detection performance on S-N-MNIST variants in terms of both
accuracy (%) and mean average precision.

S-N-MNIST

v1 v2 v2fr v2fr+ns

accuracy 94.9 94.7 88.6 85.5

mAP 91.3 90.5 81.5 77.4

tion accuracy by first selecting the predicted bounding box having the highest
intersection over union (IOU) with the ground truth box and then using its
class prediction to compute the classification score. We compare the classifi-
cation predictions thus obtained with previous object recognition networks
in Table 3.1 on the previous page. YOLE, despite not being trained only to
perform classification, still achieves better results than previous recognition
networks. In particular, it outperforms previous SNN-based solutions, such
as HFirst [140] and Gabor-SNN [85], highlighting the advantage of using a
deep architecture trained end-to-end to maximize performance compared to
a shallow SNN architecture trained without backpropagation.

The performance of YOLE is also slightly better on N-Caltech101 than that
of HATS [85], a prior work that combines an asynchronous mechanism to
extract features with an SVM classifier for prediction. YOLE is similar, as it
combines feature extraction through asynchronous event-based convolutional
layers with a fully-connected classifier for prediction. However, as part of the
YOLO training approach [19], we apply an MSE loss to train the network’s
output classification neurons (see Equation 3.10 on page 54), which is gener-
ally suboptimal if compared to the classification objective optimized by the
SVM. Directly training to optimize a cross-entropy loss would most likely
have resulted in better results.

detection performance of yole. We start by analyzing the detection
performance of the YOLE architecture by gradually increasing the difficulty
of the detection task. To do so, we use the different variants of the proposed
Shifted N-MNIST dataset detailed in Section 3.5.1 on page 57. Results are
reported in Table 3.2 in terms of both accuracies, computed as reported before,
and mean average precisions [259]. We denote as v1 the results obtained
using scenes composed of a single digit and with v2 those obtained with
scenes containing two digits in random locations of the field of view. YOLE’s
94.91% accuracy on single objects, which is higher than prior asynchronous
networks reported in the previous paragraph, is achieved with a mean average
precision of 91.3, indicating good localization capabilities as well. In the
case of simultaneous prediction of multiple objects (Shifted N-MNIST v2),
the network still shows good detection performance as the mean average
precision remains nearly unchanged when switching from one object to two.
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Table 3.3: Performance comparison between YOLE and fcYOLE on detection
datasets.

Classifier Score
S-MNIST Blackboard OD-Poker

N-Caltech101

DVS MNIST DVS

YOLE MLP
mAP 92.0 87.4 82.2 39.8

acc 96.1 90.4 87.3 64.9

fcYOLE
1 × 1 mAP 87.4 84.7 78.7 26.9

e-conv acc 94.0 88.5 79.1 57.1

The network performance starts deteriorating when additional non-target
fragments (v2fr) and noisy (v2fr+ns) events are introduced. The maximum
decrease in performance is recorded after adding fragments, which may
indicate a bias toward detecting any object-like cluster and thus a poor ability
in predicting reliable objectness scores (see Section 3.4.1 on page 53). However,
the network still achieves good performance on both Blackboard-MNIST and
OD-Poker-DVS, which include similar but significantly more realistic noise
patterns.

yole vs. fcyole. We then compare the performance of YOLE against its
fully-convolutional variant, fcYOLE. We use the proposed dataset extensions
as well as N-Caltech101, and report detection results in Table 3.3. Qualitative
results showing detection predictions on several samples are also provided
in 3.9 on the next page.

Both variants achieve good detection results in most of the benchmarks.
YOLE performs very well (mAP above 80%) on the Shifted-MNIST-DVS,
Blackboard MNIST, and OD-Poker-DVS datasets, as expected from the previ-
ous analysis. The only dataset where the network struggles in recognizing
objects is N-Caltech101. The increased difficulty of the task, but most signif-
icantly, the uneven nature of the dataset, explains this behavior. Classes in
N-Caltech101 [116] are highly unbalanced, with samples per class statistics
ranging from 800 (Airplanes) to just 31 samples (Inline_Skate). As a result, the
network tends to specialize in predicting the most populous classes, such as
Airplanes, Motorbikes and Faces_Easy, while it performs poorly on classes with
just a few training samples, explaining the poor aggregate scores reported
in Table 3.3. We analyze this trend in Table 3.4 on page 66, where we report
average precisions for each distinct category. This behavior is common even in
the original Caltech101 [253] dataset, and it is usually avoided by pre-training
on additional data. This strategy has become applicable in event-based vision
only very recently, thanks to the recent release of ImageNet-based datasets
[112, 260], and were not available at the time of this research.

When using fcYOLE, instead, we registered a slight decrease in perfor-
mance compared to the results we obtained using YOLE. This gap is caused
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Shifted Shifted Blackboard

N-MNIST MNIST-DVS OD-Poker-DVS N-Caltech101 MNIST

Figure 3.9: Examples of YOLE predictions. Ground truth boxes are depicted in
blue, while predictions are indicated in red. The classified class is also
reported, along with its class probability.
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Figure 3.10: Time evaluation of the proposed e-conv and e-max-pool layers under
different network configurations. The plots show the relative improve-
ment when performing event-by-event computation of an event-based
network, implemented with the proposed e-conv and e-max-pool lay-
ers, over a network with traditional layers. We run the evaluation with
different kernel sizes, number of features, number of conv layers, and
interleaving (dashed lines) or not (solid lines) a max-pooling layer after
each convolution.

by the fact that every cell in fcYOLE generates predictions by only looking
at the visual information in a limited portion of the field of view. Indeed,
by replacing the fully connected layers at the end with 1 × 1 convolutions,
cells’ predictions become limited to the network receptive [261], in this case,
32 × 32. If an object is only partially contained inside this region, the network
must estimate the object dimensions and class based on limited information.
However, it should be stressed that the difference in performance between the
two architectures does not come from the use of the proposed event layers,
whose outputs are the same as the conventional ones, but rather from the
reduced expressive power of the network. Nevertheless, by removing the last
fully-connected levels, we created a detection network with fewer parameters,
but most importantly, entirely made up of event-based layers.

asynchronous event-by-event time performance. To identify the
advantages and weaknesses of the proposed event-based framework in terms
of inference time, we compare a network composed of a variable number of
e-conv and e-max-pool layers against one made of regular network operations.
Our event-based framework runs on CPU, and it is implemented in Python
with combined NumPy [262] and C-based operations. For fairness in the
evaluation, we implement both network versions with the same libraries to
ensure an equal level of code optimization. Networks used in this analysis
have a 256 × 256 input resolution, and they are composed of a variable
number of layers. We start by comparing just one convolutional layer and then
incrementally stack several of them by optionally interleaving a max-pooling
layer in between. Several network configurations are tested by varying the
kernel size (either 3 × 3, 5 × 5, or 7 × 7) and the number of output channels
of each convolution (8, 16, 32, and 64). Convolutions are configured with
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Table 3.4: YOLE and fcYOLE average precisions on N-Caltech101
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stride 1, and padding is always applied to maintain the resolution unchanged,
making max-pooling layers the only downsampling operation. We run each
network configuration with both event-based and regular layers and report
the relative improvement as (Tf rame − Tevent)/Tf rame, which evaluates the
decrease of prediction time, in percentage, when using event-based layers
compared to the frame-based reference. We run the evaluation on CPU using
an Intel(R) Xeon(R) Gold 6238R processor.

Since the proposed framework has been specifically designed to enable op-
timized event-by-event asynchronous computation in regular CNNs, we start
by considering the setting in which networks are executed after every event’s
arrival. Results are provided in Figure 3.10 on page 65, where we report the
timings obtained by processing sequences of 100 random events, one event at
a time, uniformly sampled within a 256 × 256 frame and after having set the
event-based layers in a random state by processing 10 random events with
analogous characteristics. The proposed framework consistently outperforms
the frame-based baseline in all network configurations, highlighting the ad-
vantage of using event-based layers for asynchronous computation and the
benefits of performing sparse and localized updates over dense operations.

Intuitively, the improvement of the proposed layers is greater as the amount
of computation that needs to be performed by a single kernel operation
increases. In other words, by increasing the number of features produced
by each convolution and its kernel size, the relative improvement grows
consistently, reaching up to a 76.27% when 7 × 7 kernels are considered. The
same considerations are also valid when max-pooling layers are removed
(solid lines in the figure), as the same resolution is maintained throughout
the whole architecture, and thus the computational load does not decrease
with the depth (under an equal number of features). Under these network
setups, that is, when max-pooling layers are removed, event-based layers
achieve up to a 91.66% with 7 × 7 kernels. Notice that this configuration is
very challenging for our event-based layers since, with large kernel sizes
and without any subsampling operation, a single event is likely to affect
many features in deep layers of the network, thus triggering recomputation
instead of leveraging the proposed incremental update rules. Indeed, given
a K × K kernel setup with stride 1, a single input pixel is contained in K2

different receptive fields. In this setup, an e-conv layer receiving a new event
triggers, in the worst case, K2 new events in the next layer, which, in the
absence of a subsampling layer in between, generate in turn (K2 +K− 1)2 new
unique events, making sparseness in computation decrease with the depth.
However, despite this behavior, the proposed event-based layers can still
exploit lightweight computation in the remaining part of the feature map by
exploiting their internal state and the proposed update rules. This mechanism
lowers the computational cost compared to a traditional convolution where
all receptive fields are always recomputed.



68 asynchronous convolutional neural networks

1 layer 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers 8 layers

8 16 32 64

−1

−0.5

0

0.5

1

Number of channels

R
el

at
iv

e
im

pr
ov

em
en

t

10 evs/batch

8 16 32 64

−1

−0.5

0

0.5

1

Number of channels
R

el
at

iv
e

im
pr

ov
em

en
t

100 evs/batch

8 16 32 64

−1

−0.5

0

0.5

1

Number of channels

R
el

at
iv

e
im

pr
ov

em
en

t

200 evs/batch

8 16 32 64

−1

−0.5

0

0.5

1

Number of channels

R
el

at
iv

e
im

pr
ov

em
en

t

500 evs/batch

Figure 3.11: Time evaluation of the proposed e-conv layers under synchronous
regimes. Events are grouped in batches of 10, 100, 200, and 500 events
and used as input to a neural network with 3 × 3 kernel size, no max
pooling, and variable number of layers.

synchronous batch-based time performance. Although we de-
signed our framework to enable traditional CNNs to operate similarly to
an SNN, enabling asynchronous and event-by-event computation, we also
evaluate the proposed event-based layers when performing synchnoronus
batch-based computation. We replicate the same setup as before, considering
a network with no max-pooling layers, and focus on the setting that provided
the smallest improvement in the previous evaluation to test the limits of
event-based layers, i.e., when using 3 × 3 kernels. Evaluation is performed as
before but grouping events into batches ranging from 10 to 500 events per
batch. Results are reported in Figure 3.11.

As expected, the efficiency of the proposed event-based layers decreases as
the number of events in each batch grows. This tendency is driven by the fact
that different events may happen in distinct parts of the frame, triggering
recomputation in different areas of the network and thus further decreasing
the computational sparseness. Nevertheless, the proposed event-based layers
can still deliver improved performance when batches contain up to 200
events, in most configurations, considering a 256 × 256 resolution. As the
number of events increases, sparseness decreases, forcing feature maps to
be recomputed almost entirely, especially in deep network layers. In this
condition, the overhead of having to handle events makes the proposed layers
underperform compared to the more straightforward strategy that always
recomputes all the feature maps.

The condition studied in Figure 3.11 is indeed very challenging for the
proposed event-based layers, as events are generated uniformly across the
entire frame, without any spacial correlation. This increases the probability
of having to recompute all the features and constitutes a worst-case scenario
for our framework. To study how spatial correlation affects the proposed
layers’ performance, we focus on the 8 layers configuration, which provided
the lowest improvement among configurations studied in Figure 3.11, and
analyze how the improvement changes as a function of the events’ sparsity. In
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Figure 3.12: Time evaluation of the proposed e-conv layers under synchronous
regimes and variable sparseness. The plots replicate the same setup in
Figure 3.11 on the preceding page but consider only the 8 layers configu-
ration. The network is executed under the same conditions, but varying
the sparseness of the event stream, measured as 100 · (1− Hs ∗Ws/2562),
where the second term is the ratio between the region Hs × Ws from
which events are sampled and the frame resolution 256 × 256.

this case, we call sparsity the value 100 · (1 − Hs ∗ Ws/2562), which measures
the ratio between the region Hs × Ws from which we sample random events,
and the overall resolution 256 × 256 of the frame. We start by sampling all
events from a squared region of 1× 1 pixels (sparsity 100%) and then increase
its size until covering all the frame (sparsity 0%).

As it can be seen from the results in Figure 3.12, the performance of the
8 layers configuration reported in the previous analysis (see red lines in
Figure 3.11 on the preceding page) is only attained in the worst case when
events are completely uncorrelated. In contrast, as sparsity grows, so does the
improvement offered by the proposed event-based layers. This is true even
when 500 events per batch are employed, where the proposed framework
achieves worse performance only when sparsity is below 62.5%.

We analyze this behavior in more realistic conditions by measuring the
inference time of the fcYOLE architecture against a network with the same
structure but composed of traditional layers. We perform the evaluation on
an Intel Xeon E5-2687W cpu on two datasets, namely Shifted N-MNIST and
Blackboard MNIST. We group events into batches of 10ms and average tim-
ings across 1000 runs. Under our framework, fcYOLE achieves a 2x speedup
(22.6ms per batch) on the first dataset, highlighting the advantage of using
incremental sparse layers for computation. On Blackboard MNIST, however,
it performs slightly slower (43.2ms per batch) compared to a network making
use of conventional layers (34.6ms per batch).

The second benchmark is indeed challenging for our framework since
changes are not localized in restricted regions. In noisy scenes, such as
those in Blackboard MNIST, this condition limits the performance of the
proposed framework and favors traditional CNNs, as they can leverage highly
optimized implementations. We implemented our framework in Python, com-
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bining NumPy and C-based operations. However, with further optimizations
(e.g., a C-only implementation) or specific hardware, we expect the overhead
of handling events to decrease even in these edge cases, enabling the frame-
work to better handle dense scenes, where recomputing feature maps may
become necessary, and, at the same time, to fully exploit sparse event-based
computation whenever possible, adaptively.

3.6 conclusions

In this chapter, we proposed a framework for enabling asynchronous compu-
tation in traditional deep neural networks. We test the proposed event-based
layers on object detection, an overlooked task in event-based vision, and
design two asynchronous networks based on the YOLO one-stage detector.
We take inspiration from SNNs to design an asynchronous leak-based event
representation and incorporate its update mechanism into deep neural net-
work layers to design asynchronous update rules that avoid recomputing
feature maps from scratch.

The resulting detectors dynamically respond to input event activity by pro-
ducing results only as a consequence of incoming events and by maintaining
their internal states without performing any additional computation when no
events arrive. The proposed event-based framework is not limited to object
detection but can potentially be used to implement any state-of-the-art fully-
convolutional architecture for any task. We analyzed the time performance
of this formalization, outperforming frame-based layers when asynchronous
event-by-event computation is performed and obtaining promising results
even with batch-based computation.

A later approach, proposed by Messikommer et al. [87], builds upon the
mechanisms presented in this chapter and achieves improved performance
even in more challenging conditions. They depart from the LIF neurons’ inspi-
ration and propose to take advantage of recursive event representations. These
do not enforce a temporal synchronization over the entire surface, contrary
to the leaking mechanism we use, but only update the pixel corresponding
to the incoming event, removing the need to synchronize internal features.
Moreover, they focus on a different class of CNNs that make use of Subman-
ifold Sparse Convolutions [263] to promote sparse activation maps. These
are different from standard CNNs, which we use in our analysis, but produce
comparable performance. Similar to our mechanism, their layers maintain a
memory of the previous output and employ update rules to perform incre-
mental computation. They achieve a 2.75x speedup on N-Caltech101 samples
but perform slower than networks implemented with highly-optimized op-
erations, as in our case. We believe further research on ad-hoc hardware
implementations should be conducted to unlock the use of such methods in
real-world settings and to evaluate their true potential against GPU-based
and spike-based solutions.



4 L E A R N I N G R E P R E S E N TAT I O N S F O R
E V E N T- B A S E D N E U R A L N E T W O R K S

The preceding chapter focused on event representations at different levels. We
first presented a novel bio-inspired input representation and then designed
a framework to enable asynchronous processing by relying on the concept
of building intermediate hidden representations incrementally. We chose to
use the suggested bio-inspired encoding because of its recursive formulation,
which allowed us to create the proposed event-based layers. Nonetheless, the
proposed representation is still hand-crafted, and careful adjustment of its
hyperparameters may be required to achieve peak performance. That is also
true for the vast majority of existing event representations, which, due to their
hand-engineered design, may not convey all the information necessary for
effectively solving the task at hand. While most of the research has focused
on adapting downstream networks and learning procedures to event-based
computation, relatively little effort has been put into learning how to encode
raw event data optimally for maximizing task performance.

In this chapter, we propose addressing this challenge by framing the task of
building an event representation as a layer of a deep neural network. Along
the lines of the previous chapter, we propose to achieve this incrementally
and sparsely. We design MatrixLSTM, a novel mechanism that uses Long
Short-Term Memory (LSTM) cells to extract task-specific representations in-
crementally. We show that MatrixLSTM is capable of interfacing with any
CNN, regardless of the task or the loss function to minimize. Our learned
representation shows good flexibility and expressiveness in optical flow esti-
mation and object detection compared to existing aggregation approaches. It
improves the state-of-the-art of event-based object classification on the N-Cars
dataset [85] and shows competitive performance in terms of efficiency thanks
to a highly optimized encoding pipeline.

4.1 introduction

Contrary to standard vision devices, event-based cameras do not only encode
appearance (i.e., brightness), but they also provide very accurate motion

This chapter is based on: Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo
Matteucci. “A Differentiable Recurrent Surface for Asynchronous Event-Based Data.” In:
Computer Vision – ECCV 2020. Springer International Publishing, 2020, pp. 136–152. doi:
10.1007/978-3-030-58565-5_9
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information. These two variables are strictly interconnected in the event
stream [193, 264], and cleverly encoded with just polarity and time informa-
tion within the spatio-temporal relations between concurrent events. Indeed,
events alone only convey binary information (the increase or decrease in
brightness at a specific point in time and space), and they only acquire mean-
ing if related to previous event activity. This process of relating events gets
even more critical in the presence of noise, which, as for any imaging device,
may affect event-based cameras. Shot noise in photons or noise deriving from
electronics, such as pixel fabrication mismatch, sub-threshold transistor cur-
rent, and other nonidealities, can cause the camera to produce an unrelated
or unideal event response.

Some works perform processing event-by-event by leveraging dynamical
systems, such as SNNs, or filtering-based techniques [74–78] that are contin-
uously and asynchronously updated to produce predictions with minimal
latency. These systems typically rely on an internal state encoding the algo-
rithm belief of the scene state and its evolution in time to perform temporal
reasoning and handle noise. While very efficient, these mechanisms are often
sensitive to noise and parameter tuning, and they rarely scale to challenging
high-level vision tasks. For this reason, another line of research proposes
to process events in batches to build a sufficient signal-to-noise ratio and
produce reliable predictions. Packet-based processing has been successfully
applied in many applications, including motion compensation and segmenta-
tion [88, 120, 121], optical flow prediction [162, 202], grayscale reconstruction
[80, 162, 264], and many others. An overview is provided in Section 2.2.4 on
page 35.

Along this line, as discussed in the preceding chapter, substantial progress
has recently been achieved by converting short event sequences into image-
like event representations. This approach exploits the similarity between
these reconstructions and traditional images and directly unlocks many
frame-based approaches to also process events. That is the case of learning-
based methods, mostly CNNs, where the use of event representations has
enabled advanced deep learning tools, like adversarial training [106, 265, 266],
unsupervised learning [55, 56] and adaptation [3, 4, 190], as well as transfer
learning [92, 126], to be directly used without modifications.

Nevertheless, choosing the correct representation to utilize for a specific
task is not straightforward since it directly controls information accessible
during training and inference and can thus have an impact on the system’s
performance. As a result, several task-specific representations have emerged
over the past few years [93, 94, 112, 137]. However, these methods still rely
on hand-engineered procedures for aggregating events, which cost work to
design and may not transfer to other tasks. Deep learning algorithms have
only recently been used to learn aggregate events in a data-driven manner [92]
to enhance task performance.
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4.1.1 Main Contributions

This chapter explores this new trend in event-based vision and presents
a novel technique for learning to efficiently and effectively aggregate raw
events. We employ an Long Short-Term Memory (LSTM) cell [20] as a convolu-
tional filter and apply it over the stream of events to learn to extract 3D event
representations that aggregate pixel information through time. The whole
process is end-to-end differentiable, which means it can be trained along-
side a state-of-the-art network to extract representations containing all the
information required to tackle the task at hand. Most crucially, the proposed
procedure is explicitly designed to maintain sparsity during the encoding
process. It exclusively evaluates pixels receiving events and directly operates
on raw event features without performing any intermediate densification,
which is generally required when using similar computer vision mechanisms,
such as ConvLSTM [192].

We consider state-of-the-art architectures for event processing and replace
their hand-crafted representations with our learnable layer. We show this
simple procedure is sufficient to significantly increase their performance even
without special effort in hyper-parameter tuning, thus allowing for seamless
integration with events regardless of the architecture or objective function to
optimize. The resulting layer acts as a drop-in replacement for hand-crafted
representations. It lowers the effort required for designing effective event
encodings for the task at hand and enhances the performance of existing
architectures with minor modifications. In summary, the contributions of this
chapter are the following:

• We propose Matrix-LSTM, a task-independent approach for extracting
grid-like event representations from asynchronous event streams. The
framework is end-to-end differentiable. It can be used as input of any
existing frame-based state-of-the-art architecture and jointly trained to
extract the best representation from raw events. We detail the proposed
encoding process and motivate our design choices, along with several
other variants, in Section 4.3.1 on page 77.

• Section 4.4 on page 80 describes a set of custom CUDA kernels for
efficiently aggregating events based on position and performing the
proposed convolution-like operation over the events’ stream. These are
general order-aware group operations that enable to aggregate events
in their pixel location while maintaining the arrival order. As such, they
can be utilized even outside the proposed Matrix-LSTM layer.

• In Section 4.5 on page 82, we conduct experiments by replacing input
representations with a Matrix-LSTM layer in existing architectures. We
show that this simple modification is enough to improve the state-of-
the-art on event-based object classification on N-CARS [85] by 3.3% and
perform better than hand-crafted features on N-Caltech101 [116]. We
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also report a relative improvement on the MVSEC optical flow estima-
tion benchmark [136] of up to 30.76% over hand-crafted features [136]
and up to 23.07% over end-to-end differentiable ones [92]. Finally, we
obtain object detection results on par with grayscale reconstruction
mechanisms on the Gen1 Automotive Detection [135] dataset, yet with-
out being able to fully exploit pre-trained feature extractors from images
as opposed to these baselines.

• In Section 4.5.4 on page 94, we perform an extensive time performance
evaluation of the proposed layer, showing competitive results over
traditional recurrent architectures, such as ConvLSTM [192], on sparse
event streams. Matrix-LSTM can also adapt to different aggregation
intervals and can enable reliable predictions even at low latencies.

• We implement the Matrix-LSTM layer both in PyTorch [267] and Ten-
sorFlow [268] to enable easier integration of the proposed learnable
representation in existing architectures 1.

4.2 related work

Event-based vision is following a similar trajectory as that traditional image-
based computer vision experienced in the last few years, where the field
has steadily migrated from hand-engineered features to learning-based fea-
ture extractors. This section gives a brief overview of prior works, with an
emphasis on event-based data representations and their relationship to the
method proposed in this chapter. We recommend the reading of Section 2.2.2
on page 18 for a comprehensive summary on this subject.

hand-crafted representations. Several hand-engineered encodings
for event-based data have been presented throughout the years, ranging
from biologically inspired [1, 41, 269] representations, such as those used
in SNNs [63], to mechanisms specifically designed for solving a task. To
that purpose, the notion of time-surface was recently introduced by Lagorce
et al. [84], who propose to extract events’ spatio-temporal signatures by
applying exponential kernels across a time-frame containing, in each location,
the timestamp of the latest event. Sironi et al. [85] suggest extending this
approach by using memory cells to store temporal information from previous
events. As a result, their HATS representation is more noise-resistant as it can
leverage a fixed-length buffer of events rather than relying just on the most
recent one. These surface activations are then collected into histograms and
classified using a Support Vector Machine (SVM). Although of a fixed length,
the use of memory for computing representations closely relates HATS with
the solution presented in this chapter. Crucially, the accumulation process

1 Code available at https://marcocannici.github.io/matrixlstm

https://marcocannici.github.io/matrixlstm
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used in HATS is hand-engineered, while we propose to learn one tailored for
the task at hand through LSTM cells [20]. This design enables the memory to
accommodate more events and, more critically, eliminates the need to tune
the representation’s hyperparameters manually.

Zhu et al. [54] propose the EV-FlowNet architecture for optical flow predic-
tion, as well as a novel hand-crafted event-frame. A four-channel representa-
tion is built by storing, for each polarity, the number of events that occurred
in each location besides temporal information. A similar aggregation strategy
is also proposed by Ye et al. [56], while Zhu et al. [55] suggest discretizing
time into consecutive bins to improve the temporal resolution of such repre-
sentations. To that end, a voxel grid is constructed by allocating a channel
for each bin and aggregating events using a linearly weighted accumulation
similar to bilinear interpolation. A similar time discretization is also used
in Events-to-Video [126], where the event representation is used within a
recurrent-convolutional network to recover brightness from event sequences.
Despite being more complex to compute than a simple event aggregation, the
reconstructed frames closely resemble actual grayscale videos, allowing this
approach to take full advantage of transferring features trained on natural
images.

end-to-end representations. Gehrig et al. [92] are the first to propose
a method for learning a dense representation directly from raw events. The
proposed EST mechanism is similar to a voxel grid, but the kernel employed
to accumulate events is learned. In particular, they propose to implement
a trilinear filter using a Multi Layer Perceptron (MLP) to learn extracting
temporal information from each event independently. Features extracted
from events occurring in the same pixel location are then added together
to obtain the final pixel encoding. Among available event representations,
EST is the one that most closely relates to the mechanism proposed in this
chapter. However, it processes events independently and does not leverage
the sequential nature of events during the encoding phase, preventing the
network from adapting the aggregation strategy based on previous events.
Instead, our method can integrate information conditioned on the current
state and decide how relevant each event is to perform the task and how much
information to retain from past events, thanks to the memory mechanism of
LSTM cells.

Parallel to that of event representations, a recent trend in event-based
processing is also investigating mechanisms that do not require explicit
intermediate representations to perform a task [89, 102, 103]. Among these,
Neil et al. [258] use a variant of the LSTM network, named PhasedLSTM, to
learn sampling information at regular rates from asynchronous event streams.
Despite collecting event data sequentially through LSTM cells as in our work,
PhasedLSTM employs a single cell to encode the whole event stream and
extracts a single encoding of the scene, disregarding spatial resolution. This
approach typically fails to generalize to challenging tasks [269] and can not
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Figure 4.1: Overview of Matrix-LSTM (figure adapted from [258]). Events in each
pixel are first associated with a set of features f (x,y)

i , and then processed

by the LSTM. The last output, s(x,y)
T , is finally used to construct RE .

Larger receptive fields can optionally be used to extract spatio-temporal
features in each pixel. In this case, event coordinates (x, y)i, relative to the
receptive field, are also added before processing. GroupByPixel is shown
here on a single sample (N = 1) highlighting four non overlapping 3 × 3
kernels producing 2 × 2 features. Colors refer to pixel locations, while
intensity indicates time. For clarity, the features’ dimension is not shown
in the figure.

be easily integrated with traditional network designs, such as standard CNNs.
In contrast, this chapter proposes using an LSTM as a convolutional filter,
obtaining a translation-invariant module that independently integrates local
temporal features while still retaining spatial structures.

Finally, although it has never been adopted directly for aggregating raw
events, we also mention the ConvLSTM [192] network, a convolutional variant
of the LSTM that extends recurrent processing to grid-like structures. Despite
its similarity with our method, since both extend the notion of convolution to
LSTM cells, ConvLSTM is not straightforward to apply to sparse event-based
streams and requires the input to be densified into frames before processing.
This involves building either very sparse frames of simultaneous events,
mostly filled with padding, or dense frames containing unsynchronized
events. Our formulation, instead, preserves sparsity during computation and
does not require events to be densified, even when large receptive fields are
considered.

4.3 method

Given a time interval τ (e.g., the length of an event recording), the set of
events produced by an event-based camera can be defined as a sequence E =
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{(xi, yi, ti, pi) | ti ∈ τ}, ordered by the event timestamp ti. The coordinates
(xi, yi) indicate the location (within the H × W resolution) where events are
generated and pi ∈ {−1, 1} defines their polarity. Since the event camera is
composed of independent pixels producing events as soon as they detect a
significant brightness change, in principle, multiple events can be generated at
the same timestamp. However, the density of the events at a fixed timestamp
t is likely to be very low. As a result, in order for traditional frame-based
algorithms to interpret events, a mechanism capable of aggregating their
information through time into an image-like representation RE is required.

4.3.1 Matrix-LSTM

Analogously to Gehrig et al. [92], our goal is to learn end-to-end a fully
parametric mapping M : E → RE ∈ RH×W×C, between an event sequence
and a dense event representation RE in such a way to provide the best features
for a given task to be learned. In this chapter, we propose to implement M
as an H × W matrix of LSTM cells [20]. We do not aim to recreate a frame
that looks like a picture taken from the original scene, like a greyscale or an
RGB image [126, 270], but rather to extract task-aware features that improve
performance, regardless of their appearance. A graphical representation of
the proposed solution is given in Figure 4.1 on the facing page and discussed
in the following.

Let’s define the ordered sequence of events E (x,y) produced by a single
pixel (x, y) during the interval τ as E (x,y) = {(xi, yi, ti, pi) | ti ∈ τ, xi =

x, yi = y} ⊂ E . We define its length as T(x,y) = |E (x,y)|, which may potentially
be different for each location (x, y). A set of features f (x,y)

i ∈ RF is first
computed for each event occurring at location (x, y), typically the polarity
and one or multiple temporal features (see Section 4.5 on page 82), resulting
in a sequence F (x,y) = { f (x,y)

i | i ∈ E (x,y)}. These are raw event features as
we aim to learn extracting more complex ones by analysing spatio-temporal
correlations between events.

To this purpose, we split the input frame into a grid and associate an
LSTM cell LSTM(x,y) to each pixel location. Each of these recurrent units
processes the sequence of features F (x,y) asynchronously, keeping track of
the current integration state and condensing all events into a single output
vector s(x,y) ∈ RC. In particular, at each time ti, the LSTM(x,y) cell integrates
the input feature fi and produces as a result the updated pixel representation
s(x,y)

t . Once all the events are processed, the last output of the LSTM cell
compresses the dynamics of the entire sequence E (x,y) into a fixed-length
vector s(x,y)

T that can thus be used as a pixel feature (here we dropped the
superscript (x,y) from T for readability). We build the final representation
RE by collecting all LSTMs’ final outputs s(x,y)

T into a dense tensor of shape
H × W × C. Since event-based camera’s pixels produce an output only if a
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Figure 4.2: Matrix-LSTM with temporal bin splitting. The temporal domain is split
in non-overlapping windows from which independent Matrix-LSTM
representations are extracted. A Squeeze-and-Excitation [271] layer is
then optionally applied to correlate features in time.

change is detected, a fixed all-zeros output is used whenever the set of events
E (x,y) is empty for a given (x, y) location.

receptive field size. Matrix-LSTM, as for a kernel in a standard convo-
lution, may be applied over the event stream using a variable stride and kernel
dimension. In particular, given a receptive field of size KH × KW , each LSTM
cell can be extended to process the local neighborhood of asynchronous
events around its pixel location E (x,y) = {(xi, yi, ti, pi) | ti ∈ τ, |x − xi| ≤
⌊KW/2⌋, |y − yi| ≤ ⌊KH/2⌋} instead of a single-pixel sequence. In this formu-
lation, events’ features are computed as in the original formulation. However,
an additional coordinate feature (px, py) is also added, specifying the relative
position of each event within the receptive field. Coordinate features are
range-normalized so that an event occurring in the top-left pixel of the recep-
tive field has feature (0, 0), while one occurring in the bottom-right position
has feature (1, 1). Features are processed as in the previous formulation,
with each LSTM cell consuming its event sequence to produce the overall
pixel vector s(x,y)

T . In this case, the resolution of the output representation
RE may vary depending on the stride and kernel dimension, similarly to
a convolutional layer. Events belonging to multiple LSTMs’ receptive fields
(e.g., when using a 1 × 1 stride and receptive field greater than 1 × 1) are
processed multiple times by each of these LSTMs, independently, each time
with a different coordinate feature. This general formulation is depicted in
Figure 4.1 on page 76.

temporal bins. Taking inspiration from previous methods [55, 92, 126]
that discretize time into temporal bins, we further extend Matrix-LSTM
to optionally operate on successive time windows. Given a fixed number
of bins B, the original event sequence is split into B consecutive windows
Eτ1 , Eτ2 , ..., EτB . Each sequence is processed independently by taking the output
of each LSTM at the end of each interval to build a representation REb and
then re-initializing the LSTMs’ states before the next sub-sequence starts.
This gives rise of B different representations REb that are then concatenated
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to form the final representation RE ∈ RH×W×B·C. In this formulation, the
LSTM’s input features f (x,y)

i usually contain both global temporal features
(i.e., referring to the original uncut sequence) and relative features (i.e.,
relative to the sub-sequence). Although LSTMs should be able to retain
memory over very long periods, we found that discretizing time into intervals
helps the Matrix-LSTM layer in maintaining event information, especially in
tasks requiring precise time information such as optical flow estimation (see
experimental results in Section 4.5.2 on page 88).

temporal correlation. When computing MatrixLSTM over multiple
bins, each bin’s representation is extracted independently from the others.
While this improves convergence, the LSTM temporal reasoning becomes
limited to operate only within each temporal window. To overcome this issue,
we propose to make use of the Squeeze-and-Excitation (SE) self-attention
module proposed by Hu et al. [271]. SE is applied over RE ∈ RH×W×B·C to
re-modulate channel features by modeling correlations within and between
different bins. Given RE , the SE layer first squeezes the spacial information
into a channels descriptor zsq ∈ RB·C through non-parametric average pool-
ing. Then, an excitation operator is applied to correlate channel information.
An activation vector s ∈ RB·C is computed from zsq through a learnable
transformation implemented as a two-layer MLP with a bottleneck that down-
sizes B · C to B · C/r. The final representation is computed as R̂E = RE · s,
where the product · implements the product between the scalar si and the
i-th channel of RE . As a result, R̂E has the same dimensions of the original
representation, but it provides channel information that is not confined to a
single bin but that expands instead across all the event stream. This variant
of Matrix-LSTM is depicted in Figure 4.2 on the facing page.

parameters sharing. Inspired by the convolution operation defined
on images, we designed Matrix-LSTM to enjoy translation invariance. This
property is achieved by sharing the parameters across all the LSTM cells, as in
a convolutional kernel. Events in each location are processed sequentially and
independently using the LSTM memory to accumulate values and perform
conditioned integration. Similar to a convolution operation, we force the
learned transformation to be invariant on the position from which features
are extracted, learning a general integration procedure as a result. Taking
advantage of the LSTM gating mechanism, Matrix-LSTM learns an optimal
integration strategy given the current state by deciding each time how to
encode the current event based on the previous events’ history (e.g., using
the timing information to dynamically adapt to different event rates). Sharing
parameters not only drastically reduces the number of parameters in the
network, but it also enables transferring a learned transformation to higher
or lower resolutions as in fully-convolutional networks [219].

We highlight that such an interpretation of the Matrix-LSTM functioning
also fits the framework proposed by Gehrig et al. [92]. In their formulation,
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popular event densification mechanisms are rephrased as kernel convolutions
on the event field, i.e., a discretized four-dimensional manifold encompassing
the spatial, temporal, and polarity dimensions. We finally report that the
simplest formulation given at the beginning of this section is equivalent to a
1 × 1 ConvLSTM [192] applied on a dense tensor obtained by stacking events
in pixel locations by arrival order. Despite this equivalence, our formulation
has better space and time performance on sparse event sequences as reported
in Section 4.5.4 on page 97. Furthermore, the extension to larger receptive
fields provided in Figure 4.1 on page 76 has superior accuracy performance
on asynchronous event data compared to ConvLSTM.

4.4 implementation details

The convolution-like operation described in the previous section can be im-
plemented efficiently by means of two carefully designed event grouping
operations. Rather than replicating the LSTM unit multiple times on each spa-
tial location, a single recurrent unit is applied over different E (x,y) sequences
in parallel. These two operations, namely groupByPixel and groupByTime,
allow event streams to be split based on the pixel location and temporal
bin. After being reshaped, the input is ready to be processed by a single
LSTM network, implementing parameter sharing across all pixel locations
and temporal windows. We implement these operations as custom CUDA
kernels to allow for fast event processing. These operations are not specific to
Matrix-LSTM, since grouping events by pixel index is a common operation in
event-based processing and could thus benefit other implementations making
use of GPUs. We give a detailed overview of the two reshape operators in the
following.

4.4.1 GroupByPixel

This operation translates from event-sequences to pixel-sequences. Let X be a
tensor of shape N × Tmax × F, representing the features f (x,y)

n,i of a batch of N
samples, where Tmax is the length of the longest sequence in the batch. We
define the groupByPixel mapping on X as an order-aware reshape operation
that rearranges the events into a tensor of pixel-sequences of shape P ×
T(x,y)

max × F. Here T(x,y)
max is the length of the longest pixel sequence E (x,y)

n , and
P is the number of active pixels (i.e., having at least one event) in the batch,
which equals N · H · W only in the worst case. Pixel-sequences shorter than
T(x,y)

max are padded with all-zeros events to enable parallel processing
The tensor thus obtained is then processed by the LSTM cell, which treats

samples in the first dimension independently, effectively implementing pa-
rameter sharing and applying the transformation in parallel over all the
pixels. The LSTM output tensor, which has the same shape as the input one,
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Figure 4.3: An example of the groupByPixel operation on a batch of N = 2 samples
and a 2 × 2 pixel resolution. Different colors refer to different pixel loca-
tions while intensity indicates time. For clarity, the features dimension is
not shown in the figure.

is then sampled by taking the output corresponding to the last event in each
pixel-sequence E (x,y)

n , ignoring values computed on padded locations. Values
thus obtained are then used to populate Matrix-LSTM representation. To
improve efficiency, for each pixel-sequence E (x,y)

n , groupByPixel also keeps
track of the original spatial position (x, y), the index of the sample inside
the batch, and the length of the pixel-sequence T(x,y)

n , namely the index of
the last event before padding. Given this set of indexes, the densification
step can be performed as a simple slicing operation. Refer to Figure 4.3 for
visual representation of this process. groupByPixel is implemented as a custom
CUDA kernel that processes each sample in parallel and places each event
feature in the output tensor maintaining the original temporal order.

4.4.2 GroupByTime

The Matrix-LSTM variant that operates on temporal bins performs a similar
pre-processing step. Each sample in the batch is divided into a fixed set
of intervals. The groupByTime CUDA kernel pre-processes the input events
generating an N ∗ B × Tb

max × F tensor where the B bins are grouped in the
first dimension, taking care of properly padding intervals (Tb

max is the length
of the longest bin in the batch). The Matrix-LSTM mechanism is then applied
as usual, and the resulting N ∗ B × H × W × C tensor is finally transposed
and reshaped into an N × H × W × B ∗ C event representation.
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4.5 evaluation

Matrix-LSTM is a layer capable of learning an effective event aggregation
process regardless of the task or the objective function to optimize. We
test the proposed mechanism on three different tasks: object classification
(Section 4.5.1), optical flow estimation (Section 4.5.2), and object detection
(Section 4.5.3). With these three tasks, we test Matrix-LSTM’s ability to gen-
eralize both to high-level and low-level tasks. We evaluate the goodness of
Matrix-LSTM features indirectly: we take a state-of-the-art architecture as
a reference and evaluate the proposed learnable layer in terms of the gain
in performance obtained by replacing the network’s representation with a
Matrix-LSTM.

4.5.1 Object classification

We evaluate the model on the classification task using four publicly avail-
able event-based collections, namely N-Cars [85], N-Caltech101 [116], N-
MNIST [116], and ASL-DVS [89]. The N-Caltech101 and N-MNIST collections
are event-based conversions of the popular Caltech-101 [142] and MNIST [272]
datasets, respectively, whilst N-Cars and ASL-DVS are recordings of real-
world scenes. A detailed description and comparison of these datasets, along
with visual representations of some of their samples, is provided in Sec-
tion 2.2.3 on page 26.

Network Architectures

We use two network configurations to test Matrix-LSTM, namely the classifier
used in Events-to-Video [126], and the one used to evaluate the EST [92]
representation. Both are based on ResNet [220] backbones and pre-trained
on images (i.e., ImageNet [146] or grayscales versions of the original images).
Events-to-Video [126] uses a ResNet18 configuration, it leaves the first convo-
lutional layer as in the pretraining and adds an extra fully-connected layer at
the end to account for the different number of classes in both N-Calthech101

and N-Cars (we refer to this configuration as ResNet–E2Vid). EST [92] in-
stead uses a ResNet34 backbone and replaces both the first and last layers,
respectively, with a convolution matching the number of input features and a
fully-connected layer with the correct number of output classes (we refer to
this configuration as ResNet–EST). When testing on ASL-DVS [89] we follow
a similar procedure but use ResNet50 [220] as the backbone, following the
evaluation protocol of Bi et al. [89].

To perform a fair comparison, we replicated the two settings using the
same number of channels in the event representation (although we also
tried different channel values) and data augmentation procedures (random
horizontal flips and crops of 224 × 224 pixels). We perform early stopping
on a validation set in all experiments, using 20% of the training on N-Cars
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Table 4.1: Accuracy (%) on N-Cars using the ResNet18–E2Vid network as backbone
with variable time encoding and normalization.

ResNet

Norm
ts absolute ts relative delay relative

✓ 95.22 ± 0.41% 94.77 ± 1.01% 95.40 ± 0.59%

95.75 ± 0.27% 95.32 ± 0.85% 95.80 ± 0.53%

Table 4.2: Accuracy (%) on N-Cars using the ResNet18–EST network as backbone
with variable time encoding and number of bins.

1 bin 2 bins 9 bins

delay
glob+loc - 92.68 ± 1.23% 92.32 ± 1.02%

local 92.64 ± 1.21% 92.35 ± 0.83% 92.67 ± 0.90%

ts
ts glob+loc - 93.46 ± 0.84% 93.21 ± 0.49%

local 92.65 ± 0.78% 92.75 ± 1.38% 93.12 ± 0.68%

and using the splits provided by the EST official code repository [92] for
N-Caltech101. ADAM [257] is used as the optimizer for all experiments
with a learning rate of 10−4, except for ASL-DVS, where we used 10−3. We
use a batch size of 64 and a constant learning rate on N-Cars, ASL-DVS,
and N-MNIST. On N-Caltech101, instead, we use a batch size of 16 while
decaying the learning rate by a factor of 0.8 after each epoch when testing
on ResNet–E2Vid, and a batch size of 100 with no decay with the ResNet–EST
setup. Finally, to provide a robust evaluation, we compute the mean and
standard deviation values by running evaluations with five different seeds in
all the experiments.

Results

The empirical evaluation is organized as follows. We search for hyper-
parameters using ResNet18 on N-Cars, since this configuration provides
an optimal tradeoff between complexity and training time, thus allowing us
to explore a larger number of parameters. We then select the best configu-
ration resulting from this analysis and train the remaining architectures on
the N-Caltech101, N-MNIST, and ASL-DVS datasets. We focus the analysis
primarily on N-Caltech101 and N-Cars since they provide challenging sce-
narios, but we also evaluate Matrix-LSTM’s performance on N-MNIST and
ASL-DVS to analyze how the layer behaves when learning in more accessible
settings.

matrix-lstm + resnet-e2vid. We start by identifying the optimal time
feature to provide as input to Matrix-LSTM using the ResNet–E2Vid baseline,
as reported in Table 4.1. Here we focus only on simple temporal encodings, as
we want the layer to automatically learn to encode events from raw features,
alleviating the need to hand-engineer ad-hoc feature extractors. We distin-
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Table 4.3: Accuracy (%) on N-Cars with ResNet18–EST as a backbone, using polarity
+ global ts + local ts as features, optional SELayer and variable number of
bins.

SE 2 bins 4 bins 9 bins 16 bins

93.46 ± 0.84% 92.68 ± 0.62% 93.21 ± 0, 49% 92.01 ± 0.45%

✓ 93.71 ± 0.93% 92.90 ± 0.62% 93.30 ± 0, 47% 92.44 ± 0.43%

Table 4.4: Accuracy (%) on N-Cars with ResNet18–EST as a backbone, using polarity
+ global ts + local ts as features, SELayer and variable number of channels.

Channels

bins 4 8 16

1 93.88 ± 0.87% 93.60 ± 0.30% 94.37 ± 0.40%

2 93.05 ± 0.92% 93.97 ± 0.52% 94.09 ± 0.29%

bins 4 7 8

9 92.42 ± 0.65% 93.56 ± 0.46% 93.49 ± 0.84%

guish between ts and delay features and between absolute and relative scopes.
The first distinction refers to the type of time encoding, i.e., the timestamp
of each event in the case of ts feature, or the delay between an event and
the previous one in case of delay. Time features are always range-normalized
between 0 and 1, with the scope determining whether the normalization
occurs before (absolute feature) or after (relative feature) breaking events into
pixel-sequences. In the case of ts, absolute means that the first and last events
in the overall sequence E have time feature 0 and 1, respectively, regardless
of their position, whereas relative means that the previous condition holds for
every pixel-sequence E (x,y). When utilizing delays, we only consider a relative
scope because an absolute one would result in uncorrelated features after
grouping them into pixel sequences, as the delay may refer to events in two
separate positions when computed with a global scope. Finally, we always
add the polarity, obtaining a 2-value feature f (x,y)

i as input to Matrix-LSTM.
Delay relative and ts absolute are those providing the best results, with ts relative
having higher variance. We select delay relative as the best configuration. Ta-
ble 4.1 on the preceding page shows the effect of applying to Matrix-LSTM’s
output representations the same frame normalization used to pre-train the
ResNet backbone on ImageNet. While applying normalization makes sense
when the representations are similar to those used in pretraining, as in Events-
to-Video [126], we discovered that in our case, where no constraint is imposed
on representations’ appearance, this does not improve the performance.

matrix-lstm + resnet-est. We continue the experiments on N-Cars by
exploring the effect of using bins on the quality of Matrix-LSTM features. We
use the ResNet–EST baseline and start by identifying the best time encoding
for this configuration. Since multiple intervals are involved, we distinguish
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between global and local temporal features. The first type is computed on the
original sequence E , before splitting events into intervals, whereas the latter
locally, within the interval scope Eτb . For local features we consider the best
options we identified on ResNet-E2Vid, namely delay relative and ts absolute.
We only consider ts as a global feature since a global delay loses meaning
after interval splitting, similarly to the scope. Results are reported in Table 4.2
on page 83 where values for single bin are missing since in that case there
is no distinction between global and local features. Adding a global feature
consistently improves performance. This additional feature can indeed help
the LSTM network perform integration conditioned on a global timescale,
thus enabling the extraction of temporal-consistent features. We use global ts +
local ts features in the next experiments since this provides better performance
and reduced variance, and we always add the polarity feature.

Following the analysis on the EST representation [92], we then search
for the best number of bins, namely B ∈ {2, 4, 9, 16}, while using a fixed
polarity + global ts + local ts configuration. In these experiments, we also make
use of the Squeeze-and-Excitation (SE) [271] extension of Matrix-LSTM to
correlate representations extracted from consecutive bins. Being the number
of channels limited, we always use a reduction factor r = 1. As reported
in Table 4.3 on the facing page, adding the SE layer consistently improves
performance. We explain this by noticing that event-frames computed on
successive intervals are naturally correlated and, thus, explicitly modeling
their interdependency helps in extracting richer features.

Finally, we perform the last set of experiments to select the Matrix-LSTM
hidden size, which also controls the number of output channels. Results are
reported in Table 4.4 on the preceding page. Note that we only consider 4, 7, 8
channels with 9 bins to limit the total number of channels after concatenation.
We found that when the number of features is high, using fewer bins provides
better performance, despite a higher complexity in terms of the number of
parameters.

discussion. Classification results on N-Cars and N-Caltech101 datasets
for the top performing configurations of both ResNet-E2Vid and ResNet-EST
variants are reported in Table 4.5 on the following page. We use relative delay
with ResNet-E2Vid and global ts + local ts with ResNet-EST. Through an exten-
sive evaluation, we show that using the Matrix-LSTM representation as input
to the baseline networks and training them jointly improves performance by
a good margin. Indeed, under the ResNet34-E2Vid setup, our solution sets a
new state-of-the-art on N-Cars, surpassing the Events-to-Video model. This is
a remarkable result, as Events-to-Video was trained to extract realistic recon-
structions and could, therefore, take full advantage of the ResNet pretraining,
contrary to our model. The same does not happen on N-Caltech101, whose
performance typically greatly depends on pretraining, even on the original
image-based version, and where Events-to-Video has, therefore, an edge. De-
spite this, our model only performs 0.9% worse than the baseline. Under the
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Table 4.5: Classification accuracy (%) on N-Cars [85] and N-Caltech101 [116].

Method Classifier
Channels

(bins)
N-Cars N-Caltech101

H-First [140] spike-based - 56.1 0.54

HOTS [84] histogram similarity - 62.4 21.0

Gabor-SNN [85] SVM - 78.9 19.6

HATS [85]
SVM - 90.2 64.2

ResNet34–EST [92] - 90.9 69.1

ResNet18–E2Vid [126] - 90.4 70.0

E2Vid [126] ResNet18–E2Vid 1 91.0 86.6

Matrix-LSTM

(Ours)

ResNet18–E2Vid 3 (1) 95.80 ± 0.53 84.12 ± 0.84

ResNet34–E2Vid 3 (1) 95.65 ± 0.46 85.72 ± 0.37

EST [92]
ResNet34–EST 2 (9) 92.5 81.7

ResNet34–EST 2 (16) 92.3 83.7

Matrix-LSTM

(Ours)

ResNet18–EST 16 (1) 94.37 ± 0.40 81.24 ± 1.31

ResNet34–EST 16 (1) 94.31 ± 0.43 78.98 ± 0.54

ResNet18–EST 16 (2) 94.09 ± 0.29 83.42 ± 0.80

ResNet34–EST 16 (2) 94.31 ± 0.44 80.45 ± 0.55

ResNet18–EST 2 (16) 92.58 ± 0.68 84.31 ± 0.59

ResNet34–EST 2 (16) 92.15 ± 0.73 83.50 ± 1.24

Table 4.6: Classification accuracy (%) on N-MNIST [116] and ASL-DVS [89].

Method Classifier
Channels

N-MNIST ASL-DVS
(bins)

H-First [140] spike-based - 71.2 -

HOTS [84] histogram similarity - 80.8 -

HATS [85] SVM - 99.1 -

G-CNN [89] Graph CNN - 98.5 87.5

RG-CNN [89] Graph CNN - 99.0 90.1

Events Count [89] ResNet50-EST 2 (1) 98.4 88.6

E2Vid [126] ResNet18-E2Vid 1 (1) 98.3 -

EST [92] ResNet50-EST 2 (1) - 99.57

Matrix-LSTM ResNet18-E2Vid 1 (1) 98.9 ± 0.21

(Ours) ResNet50-EST 2 (1) 99.73 ± 0.04
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ResNet-EST setup, the model performs consistently better on N-Cars, while
slightly worse on N-Caltech101. It should be noted, however, that the search
for the best configuration was carried out using N-Cars as a dataset. As a
result, we expect the performance to improve if a full hyper-parameter search
is conducted directly on N-Caltech101. Finally, performance on N-MNIST
and ALS-DVS is reported on Table 4.6 on the preceding page. In both cases,
Matrix-LSTM performs better than other event-frame mechanisms. In partic-
ular, it outperforms alternative event-driven and graph-based classification
architectures, showing its ability to generalize even in simple scenarios where
overfitting on low-level features may be an issue.

4.5.2 Optical flow prediction

To assess Matrix-LSTM’s ability to extract motion-rich features for low-level
tasks, we use the optical flow extension [54] of the MVSEC [136] benchmark.
The dataset features great variability, as it was collected both indoor and
outdoor on a variety of different vehicles and lighting conditions. A detailed
description of the dataset, along with visualizations of few selected samples
are provided in Section 2.2.3 on page 26.

network architecture. We use the EV-FlowNet [54] architecture as
a reference. To perform a fair comparison between Matrix-LSTM and the
original hand-crafted features, we build our model on top of the publicly
available codebase [54]. The code contains a few minor upgrades over the
paper version, which we made sure to undo in our experiments. These consist
of removing the batch normalization layers, setting to 2 the output channels
of the layer preceding the optical flow prediction layer, and disabling random
rotations during training. For completeness, we report the results we obtained
by training the baseline from scratch with these modifications, along with
the original paper’s results in the following evaluation.

The original network uses a 4-channel event-frame, collecting in each pixel
and for each polarity, the number of events received and the timestamp of
the most recent one. We replace this representation with a Matrix-LSTM layer
producing a 4-channel representation. Following Zhu et al. [54], we train the
model on the outdoor_day1 and outdoor_day2 sequences for 300, 000 iterations.
We use Adam [257] as the optimizer with batch size 8 and an initial learning
rate of 10−5, exponentially decayed every 4 epochs by a factor of 0.8. We
noticed that EV-FlowNet might be unstable at higher learning rates, especially
at the beginning, while Matrix-LSTM could benefit from larger rates. To make
training more effective, we use a learning rate of 10−4 for Matrix-LSTM’s
parameters by multiplying their gradients by a factor of 10 during training.

Test is performed on a separate set of recordings, namely indoor_flying1,
indoor_flying2 and indoor_flying3, which are visually different from train-
ing data. The network performance is measured in terms of average end-
point error (AEE), computed as the distance between the endpoints of the
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Table 4.7: Optical flow estimation on MVSEC when input frames and corresponding
events are one frame apart (dt = 1).

Method
indoor_flying1 indoor_flying2 indoor_flying3

AEE %Outlier AEE %Outlier AEE %Outlier

Two-Channel [92, 109] events count 1.21 4.49 2.03 22.8 1.84 17.7

Voxel Grid [55, 92] weighted polarity 0.96 1.47 1.65 14.6 1.45 11.4

Ev-FlowNet [54] counts & time 1.03 2.2 2.12 15.1 1.53 11.9

Ev-FlowNet (ours) counts & time 1.015 2.736 1.606 12.089 1.548 11.937

EST [92]
exp. kernel 0.96 1.27 1.58 10.5 1.40 9.44

learnt kernel 0.97 0.91 1.38 8.20 1.43 6.47

Matrix-LSTM

(Ours)

1 bin 1.017 2.071 1.642 13.89 1.432 10.44

2 bins 0.829 0.471 1.194 5.341 1.083 4.390

2 bins + SELayer 0.821 0.534 1.191 5.590 1.077 4.805

4 bins 0.969 1.781 1.505 11.63 1.507 12.97

4 bins + SELayer 0.844 0.634 1.213 6.057 1.070 4.625

8 bins 0.881 0.672 1.292 6.594 1.181 5.389

8 bins + SELayer 0.905 0.885 1.286 6.761 1.177 5.318

Table 4.8: Optical flow estimation on MVSEC when input frames and corresponding
events are four frames apart (dt = 4).

Method
indoor_flying1 indoor_flying2 indoor_flying3

AEE %Outlier AEE %Outlier AEE %Outlier

Ev-FlowNet [54] counts & time 2.25 24.7 4.05 45.3 3.45 39.7

Ev-FlowNet (ours) counts & time 3.432 48.685 5.957 63.226 5.247 57.662

Matrix-LSTM

(Ours)

1 bin 3.366 42.022 5.870 65.379 5.015 57.094

2 bins 2.269 23.558 3.946 42.450 3.172 31.975

2 bins + SELayer 2.378 25.995 4.333 45.396 3.549 36.822

4 bins 3.023 36.085 4.870 49.077 4.652 43.267

4 bins + SELayer 2.330 24.777 4.322 44.769 3.588 36.442

8 bins 2.290 24.203 3.978 42.230 3.346 33.951

8 bins + SELayer 2.308 24.597 4.046 44.366 3.391 35.452

predicted and ground truth flow vectors. In addition, as proposed in the
KITTI benchmark [273] and done by Zhu et al. [54], we report the per-
centage of outliers, defined as the points with endpoint error greater than
3 pixels and 5% of the magnitude ground truth vector. Finally, in accor-
dance with Zhu et al. [54] evaluation protocol, we only compute the er-
ror in spatial locations where at least one event is received. Qualitative
results showing the network’s predictions on test sequences are accessible at
https://marcocannici.github.io/matrixlstm. Few frame predictions are
also provided in Figure 4.4 on the next page.

Results

In the previous classification experiments, we observed that the type of
temporal features and the number of bins play an important role in extracting

https://marcocannici.github.io/matrixlstm
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(a) Sample prediciton on the outdoor_day1 sequence.

(b) Sample prediciton on the indoor_flying1 sequence.

Figure 4.4: Qualitative results on MVSEC’s outdoor_day1 and indoor_flying1 se-
quences [136] using the best performing Matrix-LSTM configuration (2
bins and 4 channels). Some channels produced by Matrix-LSTM are visu-
alized here as RGB images, along with the network’s prediction. Notice
that no visual constraints are enforced on Matrix-LSTM’s representation,
leaving the network the freedom to encode features (or colors in this
case) that best fit the subsequent CNN.
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effective representations. We expect time resolution to be a key factor of
performance in optical flow. Hence, we focus here on measuring how different
interval choices impact the flow prediction. Rather than exploring different
types of time features, as done in classification experiments, we decide to
always use the polarity + global ts + local ts configuration, which worked well
on N-Cars while considering different bin setups.

state-of-the-art comparison. Zhu et al. [54] test Ev-FlowNet on two
evaluation settings for each test sequence to benchmark how the network
performs on different flow magnitudes: with input frames and events span-
ning two consecutive frames (denoted as dt=1), and with frames and events
spanning five consecutive frames (denoted as dt=4). We report results on both
settings in Tables 4.7 and 4.8 on page 88, respectively. While we were able
to closely replicate the results of the first configuration (dt=1), with a minor
improvement in the indoor_flying2 sequence, the performance we obtain on
the dt=4 setup is instead worse on all sequences, as reported on the first two
rows of Table 4.8.

Despite this discrepancy, which prevents the Matrix-LSTM performance
on dt=4 settings from being directly compared with the results reported on
the Ev-FlowNet paper, we can still evaluate the benefits of our representation
on larger flow magnitudes. Indeed, in this chapter, we evaluate the Matrix-
LSTM layer based on the relative performance improvement obtained by
substituting the original features with our layer. Using our Ev-FlowNet
results as a baseline, we show that Matrix-LSTM is able to improve the
optical flow quality on both settings, highlighting the capability of the layer
to adapt to different sequence lengths and movement conditions. We report
a relative improvement of up to 30.43% on dt=1 and up to 39.55% on dt=4
settings using our results as baseline. As expected, varying the number of
bins greatly impacts performance. Indeed, when using two bins instead of
just one, the AEE error decreases significantly. Interestingly, we achieve the
best performance by considering only 2 intervals, as adding more bins hurts
performance. We believe this behavior resides in the nature of optical flow
prediction, where the network is implicitly asked to compare two distinct
temporal instants. This configuration consistently improves the baseline by
up to 30.76% on indoor_flying2, demonstrating the ability of Matrix-LSTM
to adapt to low-level tasks where both spatial and temporal resolutions are
critical for performance.

effect of adding the se layer. Optical flow prediction is a challenging
task that requires deep neural networks to extract accurate features that
precisely describe the scene’s dynamics. Therefore, an event aggregation
mechanism encoding rich temporal features is required to enable accurate
predictions. In the previous experiments, we registered that time resolution is
key for extracting effective features with Matrix-LSTM. In particular, increas-
ing the number of bins significantly impacts the predicted flow and allows
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the network to retain temporal information over long sequences. Here we
focus, instead, on correlating temporal features by adding an SELayer to the
Matrix-LSTM output. Tables 4.7 and 4.8 on page 88 report the performance
obtained using this additional layer on the MVSEC [136] task. The results we
obtain show that adding the SELayer only improves performance on the 4
bins configuration for the dt=4 benchmark, while the SELayer consistently
helps in reducing the AEE metric on the dt=1 setting. By comparing features
obtained from subsequent intervals, the SELayer adaptively recalibrates fea-
tures and helps in modeling interdependencies between time instants, which
is crucial for predicting optical flow. We believe that a similar approach may
be used to improve the performance of other event aggregation mechanisms
based on voxel-grids of temporal bins, especially those employing data-driven
optimization mechanisms [92].

4.5.3 Object Detection

As an additional task, we also test the performance of Matrix-LSTM on object
detection using the Gen1 Automotive Detection Dataset [135]. The dataset
features real-world recordings captured in urban environments using a QVGA
304× 240 event camera [47], the same of N-Cars [85], and it constitutes, at the
time of this research, the largest detection dataset for event cameras. Details
are provided in Section 2.2.3 on page 26.

network architecture. We start by using the YOLOv3 [274] architec-
ture, an improved version of the YOLO [19] network used in the previous
chapter. YOLOv3 is an incremental improvement of its fully convolutional
predecessor [247], introducing a refined prediction scheme featuring anchor
boxes and multi-scale predictions. We extend a custom implementation [275]
of YOLOv3, written in PyTorch [267], by adding a Matrix-LSTM layer before
the network. Matrix-LSTM is configured to produce 416× 416 representations
for compatibility with YOLOv3’s input resolution. Bounding boxes are first
predicted on this input and then cropped to the 304 × 240 event camera
resolution. The network is initialized with weights pre-trained on COCO
[259], and then trained using SGD as optimizer with a learning rate of 0.001,
a momentum of 0.9, weight decay with 0.0005 strength, and batch size 16.
Similarly to semantic segmentation experiments, we increase gradients of
Matrix-LSTM parameters by a factor of 2 during training. Since the dataset is
unbalanced, with few pedestrian boxes compared to cars, we resample training
samples after each epoch to favor those containing more boxes of the class
misclassified the most at the previous validation step.

Following a subsequent work [104] to Matrix-LSTM, we also extend the de-
tection analysis to the RetinaNet [276] architecture to compare Matrix-LSTM’s
performance with other baselines. We use a ResNet50 [220] as backbone with
a pyramid feature extraction structure [277]. We integrate Matrix-LSTM
within the detectron2 [278] framework for object detection and use it as the



92 learning representations for event-based neural networks

Table 4.9: Detection results (mAP) on the Gen1 Automotive Detection dataset [135].

Representation Backbone Params (M) mAP

Histograms [109] VGG13-SparseConv [87] - 0.15

Voxel Grids [55] RetinaNet [276] + FPN [277] 32.8 0.20

E2Vid [126] RetinaNet [276] + FPN [277] 43.5 0.30

MatrixLSTM (Ours) YOLOv3 [274] 61.5 0.31

MatrixLSTM (Ours) RetinaNet [276] + FPN [277] 37.9 0.31

Voxel Grids [55] RED [104] 24.1 0.40

ATIS Grayscales RetinaNet [276] + FPN [277] 32.8 0.44

input of the RetinaNet backbone, as for YOLOv3. We start from a RetinaNet
pre-trained on COCO [259] with a 320 × 256 input resolution. We train it
alongside Matrix-LSTM for 180, 000 iterations using SDG and the same hy-
perparameters as before, except for the batch size, which is set to 4, and the
resampling strategy, which is not used in this case.

Results

The Gen1 Automotive dataset [135] exhibits similar environments to that of
the N-Cars [85] dataset we used for classification experiments. They have
been recorded with the same camera and under similar driving conditions.
For this reason, we opt to set up Matrix-LSTM with the hyperparameters that
delivered the best performance on N-Cars. In particular, we do not split the
sequence into bins and set up Matrix-LSTM to produce 3 output channels
for easier integration with the backbone network, using delays as temporal
features.

state-of-the-art comparison. We compare Matrix-LSTM performance
against other baselines in Table 4.9. We report the upper bound performance
computed by Perot et al. [104] by training a RetinaNet directly on ATIS’s
grayscale images, as well as the performance obtained with voxel grids and
E2Vid’s reconstructed grayscales. We train these two baselines with the same
hyperparameters and training process we used with Matrix-LSTM. Matrix-
LSTM obtains the same performance regardless of the backbone used. It
outperforms voxel grids by a good margin and performs on par with E2Vid
grayscales [127] when compared under the same backbone architecture. The
second of these results demonstrates Matrix-LSTM’s ability to provide high-
quality event representations and optimally interface with the processing
backbone. Indeed, E2Vid’s grayscales should be favored in this setting since
they are significantly more similar in appearance to pictures used while
pre-training the RetinaNet, and thus, they should be able to fully exploit
pre-trained features extractors. Nevertheless, Matrix-LSTM performs slightly
better than E2Vid, yet using significantly fewer parameters.
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Figure 4.5: Predictions of the YOLOv3 + Matrix-LSTM architecture on few samples
taken from the Gen1 Automotive Dataset’s test set [135]. Red and yellow
boxes refer to pedestrians and cars predictions, respectively, while blue
and green boxes indicate ground truth annotations of the same classes.
We report the predicted class probability, along with the label, on top of
every predicted box.
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· · · · · ·

Figure 4.6: A failure case of Matrix-LSTM detection. The picture shows a continuous
sequence in which both the ego-vehicle and the car in front come to a stop.
Detection of the preceding car is interrupted when it stops triggering
new events but restarts as soon as motion from either cars resumes.

We train Matrix-LSTM end-to-end to perform predictions on 50ms of data,
following Perot et al. [104]. This gives the flexibility to learn high-quality
representations for short-term encodings without incurring in memory issues
caused by training from longer sequences, which is often impossible due to
their size. Nevertheless, this configuration may sometimes prevent Matrix-
LSTM from learning long-term behaviors, which are critical for performance.
Figure 4.6 shows an example of these failure cases in which the layer, having
been trained on relatively brief sequences, has not learned to preserve its
internal state for long enough to handle cars that have stopped and thus
ceased triggering new events. State-of-the-art performance is attained by the
RED [104] architecture, a subsequent work to Matrix-LSTM, which is capable
of predicting objects even in these challenging scenarios. The approach is
comparable to that of Matrix-LSTM. However, recurrence is applied in deeper
layers of the network rather than at the input, and a sequence of voxel grids
is used instead on a learned representation, thus reducing memory usage.
Despite a less expressive input representation, RED performance is higher, as
it can better handle these conditions by training with longer sequences.

This chapter proposes to train Matrix-LSTM end-to-end without any ad-
ditional modification to the backbone network for evaluating the quality
of its features. We show that this approach is enough to increase perfor-
mance, demonstrating Matrix-LSTM’s advantage as an input representation.
Although simple end-to-end training may not be sufficient to induce the
network in learning complex behaviors from short sequences, we believe that
adding unsupervised losses to discourage information loss or using different
training schemes can significantly improve performance even in these cases.
Along this line, we discuss possible extensions and future research directions
in the conclusive chapter of this thesis.

4.5.4 Space and time complexity analysis

This section analyzes Matrix-LSTM’s efficiency in terms of time and space
complexity. We conduct experiments comparing our layer against both previ-
ous event-based representations as well as other traditional deep networks’



4.5 evaluation 95

Table 4.10: Average sample computation time on N-Cars [85] and number of events
processed per second.

Method Bins Channels Asynch.
Time

[ms]

Speed

[kEV/s]

Gabor-SNN [85] - - Yes 285.95 14.15

HOTS [84] - - Yes 157.57 25.68

HATS [85] - - Yes 7.28 555.74

EST [92] 9 2 No 6.26 632.9

Matrix-LSTM

(Ours)

1 3 No 10.89 385.7

9 2 No 8.25 468.36

Table 4.11: Average time to reconstruct the event surface in MVSEC [136] test se-
quences.

Mean reconstruction time (on GPU) [ms]

Bins Ev-FlowNet [54] surf. EST [92] Matrix-LSTM

1 2.53 ± 2.74 3.62 ± 2.35 3.20 ± 0.97

2 2.01 ± 1.22 3.94 ± 1.47 5.18 ± 1.68

9 2.04 ± 1.20 9.09 ± 1.96 4.92 ± 1.47

layers. Indeed, since Matrix-LSTM is structurally similar to a ConvLSTM
[192] layer, with some crucial differences that make it more suitable to process
raw event streams, we also compare the two under the efficiency-vs-accuracy
tradeoff, both in training and prediction settings. All evaluations, unless
explicitly specified, are performed in PyTorch on a GeForce GTX 1080Ti GPU.

Time Efficiency

time complexity. We compare the time performance of Matrix-LSTM
with other event representations following EST [92] and HATS [85] evaluation
procedures. In Table 4.10 we report the time required to compute features
from a single sample, averaged over the whole N-Cars training dataset,
for both ResNet–E2Vid and ResNet–EST configurations. Our representation
achieves similar time performance than HATS and EST, performing only
∼2ms slower than EST on the same setting (9 bins and 2 channels). Similarly,
in Table 4.11, we compute the mean representation’s computing time for
MVSEC indoor_flying test sequences. While EST can exploit parallel batch
computation within each sample, as it processes every event independently,
Matrix-LSTM relies on sequential computation to reconstruct the surface.
Despite this difference, the custom CUDA kernels we designed enable bins
and pixel sequences to be processed in parallel, drastically reducing the
processing time.

The performance reported in Table 4.10 is computed on each sample in-
dependently to enable a fair comparison with the other methods. In Figures
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Figure 4.7: Number of processed events per second (dashed lines) and timing (solid
lines) with varying number of channels (a), and bins (b).
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Figure 4.8: Accuracy as a function of latency (adapted from [85]).

4.7a and 4.7b we study instead how the mean time required to process a
sample, averaged over all the N-Cars training dataset, changes as a function
of the batch size. Performance dramatically increases when multiple sam-
ples are processed simultaneously in a batch. This is especially important
during training as optimization techniques greatly benefit from batch-based
computation.

Furthermore, while increasing the number of output channels, given the
same choice of batch size, increases the time required to process each sample
(since the resulting Matrix-LSTM operates on a larger hidden state), increasing
the number of bins has the opposite behavior. Indeed, in this configuration,
Matrix-LSTM splits sequences across multiple intervals, besides the pixel
locations, enabling further parallelization, as intervals and pixel-sequences
are treated independently.
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Table 4.12: Accuracy (%) comparison on N-Cars [85] between Matrix-LSTM and
ConvLSTM on the ResNet18–E2Vid configuration (3 channels and 1 bin).

delay relative ts absolute

3 × 3 5 × 5 3 × 3 5 × 5

Matrix-LSTM (ours) 95.05 ± 0.96% 93.38 ± 0.64% 94.92 ± 0.74% 94.34 ± 0.94%

ConvLSTM [192] 92.33 ± 0.41% 92.65 ± 0.78% 93.97 ± 1.30% 93.61 ± 1.59%

Table 4.13: Accuracy (%) comparison on N-Cars [85] between Matrix-LSTM and
ConvLSTM on both ResNet18–EST configuration (16 channels and 1
bin).

delay relative ts absolute

3 × 3 5 × 5 3 × 3 5 × 5

Matrix-LSTM (ours) 93.14 ± 0.77% 92.18 ± 0.28% 92.83 ± 1.32% 92.15 ± 0.67%

ConvLSTM [192] 90.39 ± 0.94% 90.73 ± 1.05% 92.52 ± 1.26% 92.05 ± 0.56%

accuracy-vs-latency trade-off. Following the analysis conducted
by Sironi et al. [85], in Figure 4.8 on the preceding page we analyze the
accuracy-vs-latency trade-off of Matrix-LSTM on the N-Cars dataset under the
ResNet18-E2Vid setup. We first test Matrix-LSTM’s ability to incrementally
aggregate events over a variable time window. We train a classification
network on N-Cars using 100ms sequences (i.e., full samples) and then vary
the length of the sequence used for testing. While performance significantly
drops when very few milliseconds of events are considered, the proposed
method still shows good generalization, achieving better performance than
the baselines when more than 20ms of events are used. Fixing the performance
loss on small latencies is just a matter of training augmentation: by randomly
cropping sequences to variable lengths (from 5ms to 100ms) during training,
our method consistently improves the baselines, dynamically adapting to
sequences of different lengths, even for very short latencies.

Matrix-LSTM vs. ConvLSTM

receptive field size. In Tables 4.12 and 4.13 we compare Matrix-LSTM
with ConvLSTM [192] for different choices of kernel size on the N-Cars [85]
dataset using both ResNet18–E2Vid and ResNet18–EST backbones. When
using ConvLSTM, events are densified in a volume Ẽdense of shape N ×T(x,y)

max ×
H × W × F. Matrix-LSTM performs better on all configurations, despite
achieving lower performance than its best configuration with 1 × 1 kernels
reported in Table 4.1 on page 83. Event surfaces produced by the Matrix-
LSTM layer are indeed more blurry with larger receptive fields and this may
prevent the subsequent ResNet backbone from extracting effective features.
On the other hand, using a 1 × 1 kernel allows Matrix-LSTM to only focus
on temporal information, leaving the subsequent convolutional layers in
charge to deal with spatial correlation. A visual representation of the effect of
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Receptive Field Size

1 × 1 3 × 3 5 × 5

95.80 ± 0.53% 95.05 ± 0.96% 94.38 ± 0.64%

Figure 4.9: Matrix-LSTM Resnet18-E2Vid performance on N-Cars with varying
receptive field size and stride 1 × 1.

increasing MatrixLSTM’s receptive field size, along with the corresponding
accuracy performance, is provided in Figure 4.9.

ConvLSTM, instead, does not properly handle asynchronous data when
large receptive fields are employed, which may explain the performance
discrepancy with Matrix-LSTM. To make events compatible with ConvLSTM,
they need to be densified first. A dense event volume Ẽdense is first computed
by assigning to each pixel location a vector containing the pixel’s event
sequence, padded with zeros at the end to match the longest sequence, i.e.,
Ẽdense(x, y) = pad(E (x,y), T(x,y)

MAX). Because pixels at different locations often
fire at different times and with varying frequencies, the Ẽ t

dense slice processed
by the ConvLSTM in each iteration t may not contain all simultaneous events.
Using a large ConvLSTM receptive field means to compare a neighborhood
of events that occurred at different timestamps and, therefore, not necessarily
correlated. We also highlight that the performance improvement is greater
when using delay relative temporal features than with ts absolute ones. Indeed,
while delays are always consistent within each pixel sequence, they are not
within the ConvLSTM kernel receptive field. Using an absolute temporal
encoding alleviates this issue but still provides worse performance than
Matrix-LSTM. In contrast, Matrix-LSTM provides more flexibility when large
receptive fields are considered. Indeed, events do not need to be densified
beforehand, and they are always processed by maintaining the original arrival
order, even when large receptive fields are used. Note that we do not compare
the two LSTMs on the 1 × 1 configuration since, when using Ẽdense as input
to ConvLSTM, the two configurations compute the same transformation,
despite ConvLSTM having to process more padded values. The two settings
are indeed computationally equivalent only in the worst case in which all
pixels in the batch happen to receive at least one event (i.e., P = N · H · W),
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Figure 4.10: Space and time relative improvements of Matrix-LSTM over ConvLSTM
as a function of the input density (from 10% to 100% with 30% steps).
Colors refer to different density, from low (dark colors) to high (light
colors).

which is however particularly unlikely, favoring Matrix-LSTM also in this
configuration.

space and time complexity. We compare the 1 × 1 configurations in
terms of space and time efficiency in Figure 4.10. We use the two layers to
extract a 224 × 224 frame from artificially generated events with increasing
density, defined as the ratio of pixels receiving at least one event. Benchmark-
ing is performed under PyTorch [267] on a 12GB Titan Xp by varying the
batch size, the LSTM hidden size, and the number of events in each active
pixel. We start from one hidden feature and increase its size by a factor of
2, while we increase the number of events by a factor of 10, until allowed by
GPU memory constraints. We compute the relative improvement of Matrix-
LSTM in terms of representation’s computation time and peak processing
space (i.e., excluding the ResNet and input space) during both forward and
backward stages. Finally, we aggregate the results by batch size computing
the mean improvement over all the trials.

Matrix-LSTM performs better than ConvLSTM on prediction time, with
the time efficiency increasing as the batch size increases. Its performance is
worst than ConvLSTM on memory efficiency, but only on very dense surfaces
(> 70% density). However, this situation is quite uncommon in event-based
cameras since they typically generate very sparse event streams. Indeed,
uniform parts of the scene that remain at a constant brightness, despite the
camera movement, do not appear in event-based camera recordings. For
instance, the background sky and road in MVSEC [136] make outdoor_day
sequences only have an average 10% of active pixels. Crucially, in deployment
conditions, when the backward pass is not considered and the batch size
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is set to 1, Matrix-LSTM always outperforms ConvLSTM in both time and
space complexity, further highlighting its advantage over ConvLSTM even
outside training regimes.

4.6 conclusions

This chapter proposed Matrix-LSTM, an effective method for learning to
encode events in grid-like event representations. By modeling the event en-
coding process with a spatially shared LSTM, we obtain a fully differentiable
procedure that can be trained end-to-end to extract the event representation
that best fits the task at hand. Focusing on efficiently handling asynchronous
data, Matrix-LSTM preserves sparsity during computation and surpasses
other popular LSTM variants on space and time efficiency when processing
sparse inputs. In this regard, we propose an efficient implementation of the
method that exploits parallel batch-wise computation, showing efficiency
comparable to other event-based solutions and outperforming traditional
recurrent methods. We demonstrate the effectiveness of the Matrix-LSTM
layer on multiple tasks. We improve the state-of-the-art of object classification
on N-Cars by 3.3%, reach performance on par to that of grayscale reconstrac-
tion methods on the Gen1 Automotive Detection dataset [135], and obtain a
relative improvement over previous differentiable techniques [92] by up to
23.07% on MVSEC’s optical flow prediction. Although we mostly aggregate
fixed windows of events, the proposed mechanism can be used to process
continuous streams thanks to the LSTM memory, which is able to update its
representation as soon as a new event arrives. We show this on the N-Cars
dataset, where Matrix-LSTM generalizes to different window lengths and
enables reliable predictions even at low latencies. As a future line of research,
we plan to explore the use of Matrix-LSTM for more complex tasks such as
grayscale frame reconstruction [126], ego-motion, and depth estimation [55,
56].



5 L E A R N I N G D O M A I N - I N VA R I A N T
N E T W O R K S W I T H E V E N T
S I M U L AT I O N

The previous two chapters focused on designing general methods for com-
puting and extracting event representations, whether at the input or feature
level, to maximize efficiency and performance. However, it becomes apparent
that accuracy and robustness in such learning-based methods can only be
achieved when large training sets featuring high-quality annotations are
available. As a result, in many challenging applications, event-based vision is
increasingly relying on simulation to compensate for the absence of annotated
data. While this approach to vision has contributed to advancing the field in
many applications, it also comes with a few open research questions: how
well can simulated data generalize to real environments? Furthermore, which
event representations are better suited to dealing with simulated events?

This chapter continues the analysis of event representations of the previous
two chapters but moves the focus from the efficiency-vs-accuracy tradeoff
towards studying their robustness when training conditions do not per-
fectly match real-world settings. We study this scenario under the lens of
Unsupervised Domain Adaptation (UDA) and show that traditional adapta-
tion approaches can also be utilized on events to encourage the extraction of
domain-invariant features. Moreover, we also prove the effectiveness of UDA
methods when dealing with synthetic scenes and propose an extension of the
RGB-D Object Dataset (ROD) [22] to foster future research on this analysis.

5.1 introduction

Learning-based methods have played a significant role in establishing the
efficacy of event-based cameras in a variety of challenging conditions where
standard cameras typically struggle. Several works [104, 207] exploit the high
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Figure 5.1: How can we bridge domain shifts in event-based cameras? DA4Events exploits
unsupervised domain adaptation techniques to solve this problem by
acting at the feature level. How else can simulated events be used? We
propose to use events in a real context, exploiting the complementarity
with RGB data to improve networks robustness.

dynamic range and temporal resolution of the sensor to provide reliable pre-
dictions even in the presence of fast motion and abrupt brightness changes,
while others [58, 108, 279, 280] use them in conjunction with standard de-
vices to exploit the benefits of both event-driven and traditional approaches.
However, the scarcity of annotated training data is still hampering the full
potential of learning-based approaches in many fields of event-based vision,
especially in low-level tasks where acquiring high-quality annotations is
particularly challenging.

Some works [55, 56, 204] propose to exploit unsupervised learning pro-
cedures to train event-based neural networks even in the absence of proper
annotations. However, aside from the effort needed to design and adapt
such learning tools, this possibility is only applicable in a limited number of
applications and only provides sub-optimal performance when compared
to supervised training [207]. A more general, task-independent solution
involves exploiting event-based simulators [127, 165, 168, 170] to generate
simulated event streams for training. Being able to generate data from both
static images and traditional RGB videos, these simulators enable reusing any
publicly available RGB dataset, thus taking full advantage of their annotations.
Moreover, when paired with synthetic renderers [57], they reduce the effort
of collecting event data even further and enable training with pixel-level
accurate annotations.

Nevertheless, despite ongoing efforts in increasing the realism of event
simulation [170], current simulators are still incapable of perfectly replicating
the output of a genuine sensor. Since the operating principles of event-
based cameras are complex and difficult to characterize fully [25], event
simulators typically resort to simplified event generation models [165, 168]
that only partially simulate sources of noise and non-idealities. Moreover,
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hyperparameters used during simulation, most notably the contrast threshold,
might be set differently from the values used in the real camera, moving the
two data distributions even further away. These differences often impact the
performance of deep neural networks trained solely on simulation, which,
by specializing in recognizing specific features of simulated events, may not
obtain full performance when used on actual event streams.

These disparities between training and testing data distributions are typ-
ically referred to in the literature as the Sim-to-Real gap, or shift [281]. In
event-based vision, this issue has primarily been studied in relation to simula-
tor parameters, i.e., the contrast threshold, to generate more realistic recording
by operating at the input level during data simulation. Gehrig et al. [127]
propose to randomly sample the threshold C during training to make the net-
work more robust to different hyperparameters, while Stoffregen et al. [281]
show how to estimate a threshold that matches the one used on a real sensor.
However, these approaches only partially address the issue, as they do not
account for non-idealities in simulation other than potentially incorrect hyper-
parameter selections. Moreover, to date, no previous work has proposed ways
to deal with extra distribution shifts caused by the use of rendering. Indeed,
when event simulation is performed on synthetic scenes, discrepancies in
event generation add to the differences in RGB distributions resulting in a
double shift that impacts network performance even more. We refer to this
combined shift as the RGBE-Synth-to-Real gap, while we call E-Sim-to-Real the
simpler shift where RGB images come from the same distribution. A general
procedure capable of dealing with all these inconsistencies and different tasks
is still lacking in event-based vision.

5.1.1 Main Contributions

In this chapter, we propose to address these issues by leveraging Unsuper-
vised Domain Adaptation (UDA) techniques [282–286]. Indeed, although
these methods have been extensively used in computer vision to compensate
for domain shifts, researchers have to date overlooked their potential in event-
based vision. Our insight is that reducing this gap by operating at feature level
leads to more transferable representations than traditional methods operating
at the input level. Acting on network features rather than directly on input
streams simplifies the problem since deeper representations, being more
abstract, are simpler to align than low-level ones.

This chapter focuses on both the E-Sim-to-Real and the RGBE-Synth-to-Real
shifts and analyzes different traditional domain adaptation techniques in
these contexts. Inspired by the frame-based computer vision literature, we
also analyze the impact of pretraining on network robustness and design
MV-DA4E, a simple approach to encourage preserving robust pre-trained
feature extractors during training1. Finally, we also study domain shifts in

1 Code available at https://github.com/DA4EVENT/home.

https://github.com/DA4EVENT/home
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multimodal settings, showing that event data can increase robustness in
neural networks by leveraging its complementarity with appearance-only
modalities such as RGB images.

In summary, the contributions of this chapter are the following:

• We propose to bridge both E-Sim-to-Real and RGBE-Synth-to-Real gaps
for event cameras using UDA techniques, which so far are still under-
explored in the event-based field, reducing the issue to a domain shift
problem. We show how the domain shift affects in different ways various
event representations and to what extent different UDA approaches can
soften these issues.

• We demonstrate the importance of exploiting robust pre-trained feature
extractors when dealing with domain shifts in event-based vision. To
this end, we propose a simple yet general approach, which we called
MV-DA4E, that enables preserving low-level features regardless of the
number of temporal bins in the input event representation of choice.

• Through extensive experiments on the object classification task using
N-Caltech101 [116] and its simulated version Sim-N-Caltech101 [127],
we demonstrate the effectiveness of the proposed approach. In partic-
ular, we show that UDA methods are able to fill the gap between the
simulated and real event domains, obtaining performance comparable
to a model trained on real data. Moreover, we show that the proposed
approach also generalizes to semantic segmentation on DDD17 [138],
obtaining better performance than other methods acting only on simu-
lation parameters.

• Finally, as no existing dataset enables the analysis of even-based RGBE-
Synth-to-Real shifts, we propose to extend the RGB-D Object Dataset
(ROD) [22] and its synthetic counterpart [284] with simulated and real
events. The novel N-ROD dataset provides RGB, depth, and event data.
Thus, it does not only enable the study of the RGBE-Synth-to-Real gap,
but it also unlocks multimodal analysis, encouraging further research
in this direction.

5.2 related works

When training a deep neural network for real-world applications, we often are
in a situation where the available training data does not perfectly match the
conditions in which the network will be deployed. Although real-world data
may typically be obtained with little effort, the work required in extracting
accurate annotations often prohibits it from being utilized for supervised
training. UDA proposes to address this problem by jointly exploiting both
out-of-domain labeled data as well as unlabeled target data during training.
The goal is to use labeled data, usually termed as the source domain, to
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learn the task at hand and then exploit unlabeled target data to induce
an alignment between the distribution of features extracted from the two
domains. Suppose features extracted from the target domain resemble those
of the source domain, i.e., as if they were drawn from the same distribution.
In that case, a predictor trained with supervision on source, out-of-domain
data will likely perform well also on target, real-world data, even without
finetuning.

singlemodal uda. UDA methods can be categorized according to the
adaptation strategy used. The first group comprises discrepancy-based methods,
such as the maximum mean discrepancy (MMD) [283], which explicitly
minimize a distance metric between source and target distributions [285,
287]. This constraint is often imposed at feature level and in deep layers
of the network. Alternatively, adversarial-based methods [288, 289] promote
domain-invariant features either leveraging adversarial losses or a gradient
reversal layer (GRL) [282]. Another possibility is to use self-supervised pretext
tasks [284, 290–292], whose losses act as an adaptation regularizer of the main
loss. Finally, other works exploit batch normalization layers to align source
and target statistics [293–295], while other use generative-based methods to
perform style-transfer directly on input data [296, 297].

uda for synthetic-to-real shifts. Some of the methods discussed
earlier tackle the problem of the Synthetic-to-Real transfer for object classifica-
tion tasks [282, 284, 285], intended as the domain shift between RGB images
rendered through simulation and real RGB ones [298–300]. While these meth-
ods are general, several works adapt these procedures to the task at hand. To
that end, a lot of effort has been put on semantic segmentation, where un-
supervised adversarial approaches are widely used [297, 301–303]. Hoffman
et al. [301] are the first to propose an unsupervised adversarial approach on
semantic segmentation. Following the same setup, Zhang et al. [304] propose
a curriculum-based adaptation framework, while Tsai et al. [302] use a multi-
level adversarial network to perform adaptation at different feature levels.
Departing from the adversarial setting, Vu et al. [303] extend the traditional
entropy minimization framework to pixel-level predictions, while Hoffman
et al. [297] propose to use a CycleGAN [297] to generate target images for
training, based on synthetic ones. In this chapter, we take advantage of this
literature and propose to utilize these methods to tackle multimodal domain
shifts on event data for semantic segmentation.

multimodal uda. The above methods have been specifically designed
to deal with data coming from a single modality. Very few works address
the problem of multimodal domain adaptation (MDA), but the topic has
been attracting more and more attention over the last few years. Most of the
existing MDA methods consist of simple extensions of single-modal domain
adaptation methods. In particular, Wang and Zhang [305] apply a standard
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adversarial domain adaptation strategy on RGB and depth data (RGB-D)
without relying on any relationship between the two modalities. Similarly,
Li et al. [306] propose to exploit depth data only for adaptation, ignoring
the potential benefits of using multimodal data to increase robustness on
the target domain. Instead, Loghmani et al. [284] introduce a novel self-
supervised pretext task that relates the two modalities during training, thus
making the network more robust to domain shift. Along these lines, this
chapter proposes tackling the MDA problem by leveraging depth and event
modalities jointly.

5.3 unsupervised domain adaptation

Given the previous high-level overview of Unsupervised Domain Adapta-
tion (UDA) approaches in computer vision, we now focus on describing a
few selected methods in greater depth. These methods are typically used
to perform domain adaptation on RGB images, but have also demonstrated
good performance on different modalities. As detailed in later sections, this
chapter proposes to integrate them into a unified framework for unsupervised
domain adaptation on events. Since the use of UDA techniques is completely
novel in event-based vision, no prior knowledge is available on which ap-
proach works best and how these methods combine with different input
representations. To perform a thorough analysis of unsupervised methods
on events, we integrate UDA approaches utilizing different adaptation strate-
gies (discrepancy-based, adversarial-based, and semisupervised ones) and
investigate their effectiveness both in single modal and multi-modal set-
tings, combining event data with RGBs. In the following, we give a detailed
description of each of these methods individually, while the following sec-
tion describes how these approaches can be incorporated into a broader
framework for event-based adaptation.

5.3.1 Gradient Reversal Layer (GRL)

Ganin and Lempitsky [282] were amongst the first to propose addressing
unsupervised domain adaptation with adversarial training. They focus on
object classification and consider the case of a general feedforward neural
network composed of a feature extractor F with learnable parameters θ f
followed by a label predictor Gy with parameters θy. In other words, classifica-
tion is performed as y = Gy(F (x; θ f ); θy). In this setting, domain adaptation
is achieved when features f = F (x; θ f ) produced by the feature extractor
follow the same distribution even if the input x comes from two different do-
mains, i.e., source and target data. Assessing and minimizing the differences
between these two distributions is not trivial in deep learning settings since
features f are typically high-dimensional, and they constantly change during
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the learning process. The authors propose to achieve this by looking at the
classification performance of an additional domain classifier Gd that, given
features f as input, is trained to recognize the domain to which x belongs. Its
output is given by d = Gd(F (x; θ f ); θd). When the domain classifier cannot
complete this task reliably, then the alignment of the two distributions is
obtained. They propose to achieve this by jointly optimizing the classification
accuracy of the label predictor Gy as well as that of the domain classifier Gd
through the following loss:

LGRL = L(θ f , θy, θd) = Ly(θ f , θy) + λLd(θ f , θd), (5.1)

where Ly(·, ·) is the label prediction loss on the source domain, typically a
cross-entropy loss, and Ld(·, ·) is the binary cross-entropy loss of the domain
classifier. The parameters θy and θd are trained to maximize the performance
of the two classifiers, while θ f is trained to achieve the joint objective of
maximizing task performance but also fooling the domain classifier.

To achieve this, a gradient reversal layer is put in between the feature extractor
and the domain classifier (i.e., d = Gd(GRL(F (x; θ f )); θd)) to invert the sign
of gradients backpropagated through F when minimizing Ld(θ f , θd). The
feature extractor is thus trained not to highlight domain-specific features
that would make the task of discriminating the two domains easier. As a
result, features produced by F are domain-invariant, and Gy can leverage
this property to achieve reliable predictions even on target data.

5.3.2 Rotation (ROT) and Relative Rotation (RR) Tasks

Xu et al. [290] propose to perform unsupervised domain adaptation using
an additional self-supervised task as a regularizer. The idea behind this
kind of approach is to solve an additional task during training, along with
the main classification, to incentivize the extraction of domain invariant
features. These tasks, usually called pretext tasks, do not require any manually
annotated labels but instead consist in solving relatively simple problems
involving geometric transformations. Some known transformation is applied
to available data, and the model is trained with supervision to recognize these
transformations. The intuition is that, by jointly optimizing the main and
pretext tasks together, the optimization procedure is asked to find a solution
in which extracted features must be valid both for classification as well as
for solving the auxiliary task. As a result, if the pretext task is designed to
encourage the extraction of general features, the main task can leverage these
features to make more reliable predictions even on target data.

The authors propose to achieve this through a self-supervised rotational
task. During training, along with the main objective, samples from both
the source and the target domain are randomly rotated of an angle Θ ∈
{0◦, 90◦, 180◦, 270◦}. An additional classifier is trained to classify to what
extent samples have been rotated based on features f extracted from the
shared feature extractor. In order to solve this task, the feature extractor
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is encouraged to focus more on geometrical information and less on any
peculiar characteristic of the source domain, resulting in domain-invariant
features that benefit performance on target data.

Loghmani et al. [284] extend this task to multi-modal settings in which
a network is trained to perform classification based on data from the same
scene but captured with two different sensors. As before, data from the two
modalities is rotated by two random angles θ1 and θ2. However, instead of
predicting the absolute rotation of each modality, the authors propose to
predict the relative rotation θ̂ ∈ |θ1 − θ2|. This approach has the advantage
of relating the two modalities during training, encouraging the extraction of
complementary features that may help robustness when predicting out-of-
domain samples.

5.3.3 Maximum Mean Discrepancy (MK-MMD)

The method proposed by Long et al. [283] falls onto discrepancy-based
approaches, in which the distance between feature distributions is directly
minimized through a loss. They propose to achieve this using a multi-kernel
extension [307] of the Maximum Mean Discrepancy (MMD) [308], often
referred to as MK-MMD. The key idea is to measure the difference between
the two distributions by computing the mean embedding difference of the
two through a reproducing kernel Hilbert space (RKHS), where this distance
can be explicitly minimized. Given two distributions p and q, the MK-MMD
distance is defined as the RKHS distance between the mean embeddings of p
and q as:

d2
k(p, q) ≜

∥∥Ep [ϕ (xs)]− Eq
[
ϕ
(
xt)]∥∥2

Hk
, (5.2)

where ϕ(·) is a multi kernel mapping the features in the Hilbert space.
During training, the following loss is directly minimized:

LMMD = Ly(θ f , θy) + λ
l2
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ℓ=l1
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)
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where Ly(θ f , θy) is the classifier loss, as in GRL in Equation 5.1 on the pre-
ceding page, Dℓ

s and Dℓ
t are the hidden representations at the ℓ-th layer of

the network computed from source and target samples, respectively, and
d2

k computes the MK-MMD distance between the two features distributions.
This loss is applied over multiple layers ℓ = ℓ1, . . . , ℓ2 to facilitate the align-
ment of feature spaces in deeper layers of the network. By relying on the
property that p = q iff d2

k(p, q) = 0 [307], this approach directly minimizes
the distance between the two distributions, guaranteeing the extraction of
domain-invariant features when convergence is reached.
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5.3.4 Adaptive Feature Norm (AFN)

Xu et al. [285] propose another discrepancy-based approach to address un-
supervised domain adaptation. They first analyzed the cause underlying a
difficult classification on out-of-domain samples and discovered that features
computed on target data are typically characterized by much smaller norms
if compared to that of the source domain. These features convey much less
information and thus increase the uncertainty of the classifier that cannot
rely on discriminative features to perform prediction. To tackle this issue,
the authors propose to achieve a feature alignment indirectly by seeking to
extract features with larger norms even when processing target samples. In
order not to interfere with the learning process, they propose to reach this
condition iteratively, as learning progresses. As in the previous case, the loss
is composed of a supervised and an adaptation part:

LAFN = Ly(θ f , θy) +
λ

ns + nt
∑

xi∈Ds∪Dt

Ld

(
h
(

xi; θ0
f

)
+ ∆r, h

(
xi; θ f

))
, (5.4)

where h (xi; ·) computes the mean L2-norm of features computed from sam-
ples xi through the feature extractor and Ld implements an MSE loss. θ0

f
and θ f represent the feature extractor parameters treated as constants and
learnable parameters respectively. The second term of the loss gradually
increments features’ norms by a step ∆r at each learning step. As a result, the
feature extractor is encouraged to produce features with higher norms, thus
more informative, making the task of classifying objects easier for the label
predictor even on the target domain.

5.3.5 Entropy Minimization (ENT)

Domain adaptation through entropy minimization relies on considerations
similar to that of AFN. When a classifier trained on one distribution is
utilized to classify samples from another, the uncertainty is often larger than
when prediction is made on source samples. This uncertainty can easily
be measured by analyzing how the probability is spread among predicted
classes. When a prediction is made on the source domain, the predicted class
typically receives most of the probability, while very little is given to other
classes. On the contrary, the probability is often spread almost evenly over all
classes on target data, even in the case of a correct prediction.

Grandvalet and Bengio [286] propose to address this issue by minimizing
the entropy of predicted class distributions as a regularizer on the main loss.
More formally, the following loss is minimized during training:

LENT = Ly(θ f , θy)−
1
|T | ∑

xt∈T
Gy(F(xt; θ f )) · log Gy(F(xt; θ f )), (5.5)

where F and Gy are respectively the feature extractor and the label predictor,
and xt is a sample from the target distribution. The network is jointly trained
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to perform classification on the source domain through Ly, as well as to
commit to a single class prediction, even on target samples, by minimizing
the additional entropy term. Through this minimization, the feature extractor
is asked to learn a generic mapping that allows extracting discriminative fea-
tures from both source and target samples, thus making sure that the classifier
understands the structure of unlabeled data even without supervision.

5.3.6 Adversarial-based entropy minimization (ADVENT)

Vu et al. [303] extend the concept of entropy minimization to the task of
semantic segmentation, where, instead of a global class prediction, each
pixel predicts a class probability distribution P(h,w,c)

x . The same considera-
tions about uncertainty in predictions also apply to this case: over-confident
(low-entropy) predictions are usually produced on source-like images, with
the degree of uncertainty (entropy) growing as images move away from the
source distribution. However, high-entropy regions are common in semantic
segmentation, even in source-like images. These typically occur in correspon-
dence of objects’ boundaries, where the predicted class could potentially
transition, while they are less common inside the objects, giving uncertainty
maps the appearance of edge detectors.

Rather than globally minimizing entropy, Vu et al. [303] propose to take
advantage of this characteristic and use an adversarial approach to encourage
source-like entropy patterns even on the target domain’s predictions. Uncer-
tainty masks I(h,w)

x = −P(h,w)
x · log P(h,w)

x are first computed on both source
and target domain samples, and then a domain discriminator is used to
classify the original domain starting from these masks. Training is performed
by alternately optimizing the domain classifier to recognize domains, as well
as the feature extractor to fool the discriminator, through the following two
objectives:

min
θ f

1
|Xs| ∑

xs

Ly (xs, ys) +
λadv

|Xt| ∑
xt

LD (Ixt , 1) , (5.6)

min
θd

1
|Xs| ∑

xs

LD (Ixs , 1) +
1

|Xt| ∑
xt

LD (Ixt , 0) , (5.7)

where LD is the binary cross-entropy loss of the discriminator. Notice that
the expected label for target samples Ixt is the opposite in the two objective,
since the first trains the discriminator to maximize performance (i.e., predict
the correct label 0), while the second asks the feature extractor to produce
entropy patterns making the discriminator mispredict. A simpler version of
this approach has been proposed by Tsai et al. [302], who perform adversar-
ial training directly on semantic segmentation logits produced on the two
domains, instead of passing through uncertainty maps.
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(a) RGB image (b) Real events (c) Simulated events

Figure 5.2: Real and simulated events (voxel grid [55]) on a Caltech101 sample.

5.4 method

As pointed out by Gehrig et al. [127] and Stoffregen et al. [281], differences
between simulated and real events can cause a drop in performance in
several applications, independently by the representation used to encode
events. As discussed in the previous section, this issue is typically caused by
the network’s tendency to overfit on peculiar features of the source domain,
which, not being present in the target domain, cause the network to generalize
poorly. An example is provided in Figure 5.2, where the same RGB image
from the Caltech101 dataset [253] is converted into event streams by moving
an event camera in front of it [116] or a virtual camera through simulation [127,
168]. These differences are typically caused by a wrong choice of simulator’s
hyperparameters or by the inability of event simulators to perfectly replicate
the event generation process of a real camera, which might be affected by
sensor noise and non-idealities. Despite often subtle, these discrepancies are
significant enough to have an influence on network performance.

While Gehrig et al. [127] and Stoffregen et al. [281] suggest solving the
problem by acting on the events’ generation, our insight is to see the problem
as a general domain-shift issue and employ unsupervised domain adaptation
as a solution. We focus here on deep learning approaches in event-based
vision and take advantage of deep neural networks’ ability to extract abstract
representations to address the problem at the feature level, where enforcing a
distribution alignment is easier, rather than directly on events. We show that
this approach provides better performance than previous methods as it does
not focus on a specific discrepancy but instead attempts to reduce them all
indistinguishably.

5.4.1 Formulation

Before describing the general framework and network architectures we de-
signed, let us first formalize the UDA problem under our setting. Our goal
is to learn, on a source domain S = {(xs

i , ys
i )}

Ns
i=1 with Ns labeled samples

associated with a known label space Y s, a neural network able to perform
well on a target domain T = {xt

i}
Nt
i=1 with Nt unlabeled samples and label
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Figure 5.3: Visual representation of the three shifts studied in this chapter. Groups
of symbols represent datasets being converted from the RGB space into
the event space.

Table 5.1: A comparison between the settings studied in this chapter. We indicate as
ESIM(·) the events obtained through simulation [168] from either synthetic
or real RGB images, and with EvCamera(·) those obtained using a real
event camera. We indicate Sim-to-Real and Synth-to-Real in different
colors, and highlight the corresponding shift in the right side of the table
using the same hue.

Source Target

Setting RGB Event RGB Event

E-Sim-to-Real Real ESIM(RGBreal) Real EvCamera(RGBreal)

RGB-Synth-to-Real Synth ESIM(RGBsynth) Real ESIM(RGBreal)

RGBE-Synth-to-Real Synth ESIM(RGBsynth) Real EvCamera(RGBreal)

space Y t. We assume that (i) the two domains have different distributions,
i.e., Ds ̸= Dt, and (ii) they share the same label space, i.e., Ys = Yt. In single
modal settings the input of the network is only composed of events (formally,
xs = E s and xt = E t), while in multimodal settings events are paired with
images, and thus xs = (E s, RGBs) and xt = (E t, RGBt).

To prove the proposed approach is general, we focus on studying different
domain gaps affecting events. These settings impact the difference between
the two domain distributions Ds and Dt in different ways. We start by
analyzing the E-Sim-to-Real and RGBE-Synth-to-Real shifts. While the first
only considers differences in event generation, the second is a double shift
that includes differences also in the RGB space. A simple variation of this
second scenario is also considered, which we call RGB-Synth-to-Real, where
the event generation process is shared across the two domains, and the only
difference comes from a shift in the RGB space. An overview is presented in
Table 5.1, while a visual representation is given in Figure 5.3. In the following,
we provide a description of these shifts in greater depth.

e-sim-to-real shift. With this shift, we only focus on differences in
the event generation process. Simulated events in the source domain, esim,
are generated from an RGB dataset using an event simulator, i.e., E s

sim =

ESIM(RGBs
real), and paired with real events in the target domain recorded

from the same RGB images using an actual event camera device, i.e., E t
real =
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EvCamera(RGBt
real). This shift is not novel in the literature and has been

partially addressed by improving hyperparameter selection in simulation
[127, 281]. We use this setting to investigate the ability of UDA methods
to handle differences in the event generation process and how these affect
different event representations.

rgbe-synth-to-real. This shift analyzes the combined effect of RGB
rendering and event simulation. As in the previous case, the target do-
main consists in event streams captured with a real camera, namely et

real =

EvCamera(RGBt
real). However, in this case, the source domain is composed of

simulated events obtained from synthetic renderings, E s
sim = ESIM(RGBs

synth).
This particular setting describes a double shift since the shift on event
generation (ESIM → EvCamera) is combined with that on RGB images
(RGBs

synth → RGBt
real). We show that our approach can be used to tackle even

this shift with no modification on the general framework.

rgb-synth-to-real. Finally, we consider a simplified version of the
previous setting where the shift in event generation is removed by simulating
events both on the source and target domains. Source events are thus defined
as E s

sim = ESIM(RGBs
synth), while target ones as E t

sim = ESIM(RGBt
real). We

use this simplified setting to analyze how differences in the RGB space
propagate through the event generation affecting performance.

5.4.2 DA4Event: Single and Multi Modal Event-based DA

Unsupervised Domain Adaptation (UDA) methods presented in Section 5.3 on
page 106 have all in common a similar underlying structure for performing
adaptation. This chapter takes advantage of these similarities to build a
general framework for unsupervised adaptation of events. To motivate our
design choices, we first detail these common characteristics, which have also
been exploited in previous works [284] with similar aims, and then show
how they can be exploited to design a general adaptation pipeline.

• Regularized task loss: Training in UDA settings is typically realized by
minimizing a loss composed of two terms. The first, Ly, is responsible
for maximizing task performance on the source domain. The second,
LDA, acts as a regularizer on the primary loss and promotes adaptation
by forcing feature spaces produced from the two input domains to be
similar, without any label. Although the two terms are typically inde-
pendent, meaning that a UDA technique may be utilized to accomplish
adaptation on any task, many methods adjust the regularization specifi-
cally for the task at hand. We provide an overview of such regularization
terms, i.e., UDA techniques, in Section 5.3 on page 106.

• Network decomposition: Domain adaptation is typically accomplished
in deep neural networks by aligning feature spaces produced by the
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network’s deep layers, as they are often more domain-specific than the
initial ones [309]. To this end, the network is usually partitioned into
a feature extractor F of arbitrary depth, followed by a task-specific
network G. Domain adaptation, i.e., the regularization terms, is ap-
plied over the final layers of the feature extractor, to promote domain-
invariant features that the task predictor can use to perform inference
regardless of the domain.

• Data flow: Apart from a few cases directly acting on the output of the
task classifier, such as entropy (see Section 5.3.5 on page 109), the task
predictor G is typically reserved to source domain data. The feature
extractor F , instead, is shared and used to extract features from both
domains. These features are used to compute the domain adaptive
regularization loss LDA, and, when coming from the source domain,
they are paired with labels to compute the primary task loss Ly. During
backpropagation, gradient flows through F from both Ly and LDA
feedbacks to reach the dual objective of maximizing task performance
and producing domain-invariant features.

• Unpaired training: All methods presented in Section 5.3 on page 106

perform adaptation without the need to have each sample in both source
and target appearance. In other words, the alignment is not enforced
by taking the same sample in both source and target renditions and
then forcing feature maps obtained from the two to look the same.
By contrast, these methods abstract from the specific content of the
samples and focus instead on general differences between the style used
to represent concepts in the two domains with the goal of making these
differences not appear in latent spaces. Such methods are typically
called unpaired. A random batch of source and target samples is taken
during training, potentially containing different objects or classes, and
then used to learn mapping these samples within the same feature
space.

da4event framework. Techniques presented in Section 5.3 on page 106

are all designed to operate on convolutional neural networks processing
dense input representations. In order to utilize them to perform adaptation
on event data, we follow the same procedure used in previous chapters and
convert events into a frame-like representation before processing. We then
exploit the traditional design choices discussed before to design a common
framework for UDA on event streams. We organize the proposed architecture
into three blocks as depicted in Figure 5.4 on the next page.

Domain shifts discussed in this chapter deal with multimodal RGB+E
settings in which both domains provide paired images and events, i.e.,
(RGBs, E s) on the source domain and (RGBt, E t) on the target domain. Im-
ages can either be captured by a real camera or obtained through rendering



5.4 method 115

So
ur

ce
  S

Ta
rg

et
  TESIM

Features Concat

Main Classifier (G)

Domain Adaptation
Block (DABlock) 

Fε

FI
RGBs

Rε
s

Rε
T

RGB T

εs
εT

Figure 5.4: The proposed DA4E architecture. The event generation refers, in this case,
to the E-Sim-to-Real shift, although the same pipeline applies unchanged
even in other settings. Data coming from the source and target domains
are processed separately during training. Source, labelled, data is used
for supervised classification in G, while both target and source data
are fed to the DABlock. In multimodal settings, features are extracted
from each modality using different extractors FI and Fϵ, shared across
domains, and then concatenated before prediction. The dashed data path
is instead removed, along with features concatenation, when just the
event modality is used.

[167], while events can be produced from a real event-based camera or with
an event simulation [168] starting from any of the two image domains. We
first convert event streams E s and E t into multi-channel event representations
RS

E and RT
E using one of the multiple techniques available in the literature.

Whenever possible, we make use of window-based computation by splitting
the event stream into consecutive bins and extracting a representation from
each of them, as this technique proved to provide better performance in
previous works across different representations. As a result, we obtain repre-
sentations R{S,T}

E ∈ RH×W×F with a variable number of features F depending
on the representation itself and the number of bins used.

These representations are then fed into a feature extractor FE which, fol-
lowing traditional UDA methods as discussed before, is shared between the
source and target domains. Features extracted from samples in the source
domain are processed by the classifier G and by an additional domain adap-
tation block (DABlock) which, together with features from the target domain,
performs adaptation. The DABlock implements all the techniques discussed
in Section 5.3 on page 106. It may contain an additional classifier, as in GRL
or in the case of a pretext task, or directly minimize a discrepancy between
the feature distributions, as for MMD, AFN, and entropy minimization. Dur-
ing training, the goal of the DABlock is to regularize the primary loss Ly

computed on G’s predictions through an additional loss term LDA that en-
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Figure 5.5: Top shows the process of extracting an event representation, taking
voxel grids [55] and three views as an example, while bottom details the
proposed multi-view architecture (MV-DA4E) under the E-Sim-to-Real
shift. Two unpaired random batches from source and target domains are
sampled and processed separately during training. When the multi-view
approach is not used (DA4E), event representations are fed as a single
multi-channel tensor to the feature extractor F, and multi-view pooling is
removed. Notice that only source (labelled) data are fed to the classifier
G, while both target and source data are fed to the DABlock.

courages extraction of domain-invariant features. After training, the DABlock
is removed, and prediction is performed through FE and then G, but this
time on samples taken from the target domain.

This architecture can easily be extended to multimodal settings involving
both RGB and events by adding an additional feature extractor FI processing
images from both domains. As for events, FI is shared between domains, and
its output is merged with that of FE with a simple channel-wise concatenation
before being forwarded to G and the DABlock, under the same conditions as
before. This particular variant is depicted in Figure 5.4 on the previous page.

5.4.3 MV-DA4Event: a Multi-View Approach

In the basic framework described before, we aggregate the event stream
E{s,t} = {ei = (xi, yi, ti, pi)}N

i=1 describing the spatio-temporal content of the
scene over a temporal period T, into a frame-based representation R{S,T}

E ∈
RH×W×F. While standard RGB images encode spatial (static) information
only (R, G, B channels), these frame-based representations also carry temporal
information, often producing a variable number of temporal channels as
the event sequence is split into several intervals (or bins) to retain temporal
resolution, as in a video sequence. For instance, in saccadic motion, commonly
used to gather event data from still planar images [116], these channels
correspond to the camera response to different motion directions. As a
consequence, each temporal channel represents a different observation of the
recorded object highlighting different edges (or features) of the same.
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In DA4E, we initialize the feature extractor with weights pre-trained on
ImageNet. As commonly done in event-based vision when reusing frame-
based CNNs, and discussed in the previous chapter, the first convolutional
kernel is substituted with a new one matching the number of channels F
of the input representation. This operation is typically done since F ̸= 3 in
most cases. However, while this approach enables an easy adaptation of the
architecture to a particular representation and choice of bins, pre-trained
feature extractors following the first convolution may be negatively affected,
vanishing all the benefits of transfer learning from large data sets. This effect
is particularly harmful in cross-domain settings. Indeed, we know from the
literature that the first layers of the network are usually the most affected by
the domain shift [309]. Training them from scratch may lead the network to
specialize in low-level source domain features, thus poorly generalizing on
target ones.

mv-da4e framework. Motivated by these considerations, we propose to
follow a multi-view approach to retain the first pre-trained convolutional layer.
This consists in aggregating the multi-channel event representation into three-
channels tensors, or views, obtaining representations R̃E ∈ RH×W×⌈F/3⌉×3.
The MV-DA4E architecture extends the previous DA4E approach by pro-
cessing each of these three-channels views separately through the common
feature extractor FE . The set of features thus obtained is combined with
a late-fusion approach within the multi-view pooling module MVP, which
performs average pooling both spatially and across views on the same sample.
The fout feature vector thus produced is then used through the remaining
parts of the network, and training takes place as in DA4E. This improved
version of the framework is depicted in Figure 5.5 on the facing page, where
only the single modal version is considered for clarity of presentation. Given
that the very early layers of the network are more domain-specific, while
the final ones contain more task-specific information, we believe that fusing
different views at the final layers of the network, rather than the earliest,
could allow better generalization in cross-domain settings.

5.5 n-rod dataset for synthetic-to-real domain
adaptation

Very few works in the literature address domain shift’s issues between
simulated and real events [127, 281]. These works focus exclusively on the
E-Sim-to-Real setting and use the N-Caltech101 [116] dataset for this type
of analysis. N-Caltech101, combined with the simulated version proposed
by Gehrig et al. [127], is excellent from this point of view since simulated
events were obtained by moving a virtual camera with saccadic motion
in front of RGB images, thus reproducing the same acquisition conditions
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used for recording events with the real camera. As a result, the same set of
samples is given in both the source and target domains but acquired with
different procedures. This particular condition aids in narrowing down any
performance loss exclusively to the E-Sim-to-Real shift under consideration,
excluding any drop caused by a different set of visual features in the training
set.

However, simulating events from real RGB images inherits all the com-
plexities and costs associated with standard data collection and becomes
inexpensive only if the RGB dataset is already available. Indeed, collecting
data with precise annotation is a hard problem even with standard vision de-
vices. In the literature, a common solution is to use synthetic data generation,
as it provides free access to precise annotations. Nevertheless, differences
between synthetic training data and real test one, commonly referred to as
the Synth-to-Real domain shift, severely undermine the model’s performance
on the actual data. Although the practice of simulating events from synthetic
scenes has lately gained interest in the event-based vision field [57, 58, 310–
312], the impact of simulation on the network robustness under these settings,
the RGBE-Synth-to-Real shift, is yet to be clearly analyzed.

Designing a dataset for RGBE-Synth-to-Real settings is not trivial because
two separate sets are needed, each of which must contain objects from the
same classes but acquired under different conditions (i.e., synthetic and
realistic). We propose to tackle this challenge by exploiting the RGB-D Object
Dataset (ROD) [22] for object recognition. ROD contains 41, 877 samples of
300 everyday items grouped in 51 categories, acquired with an RGB-D camera.
Each object is acquired on a turntable at approximately 1 meter and at three
different angles (30◦, 45◦, and 60◦) above the horizon. SynROD [284], a recent
extension of the dataset designed to study the Synth-to-Real domain shift
in RGB+D multimodal settings, integrates the dataset by adding synthetic
renderings of 3D models from the same categories as ROD in realistic lighting
conditions.

These two datasets combined provide all it is needed to design a dataset
for Synth-to-Real settings. We extend both versions of the dataset by introduc-
ing real event recordings obtained from ROD samples, as well as simulated
events extracted from both ROD and SynROD images. The resulting extended
dataset, N-ROD, is the first to support RGBE-Synth-to-Real analyses2. More-
over, as it inherits both real and synthetic depth data from ROD and SynROD,
it also enables a comparison with the depth modality and potential uses of
event data in multimodal settings. We provide examples in Figure 5.6 on
the next page and a detailed description of the recording procedure in the
following.

2 The dataset can be downloaded at https://n-rod-dataset.github.io/home/.

https://n-rod-dataset.github.io/home/
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Figure 5.6: Synthetic (left) and real (right) samples from the N-ROD dataset. Depth
images are colorized with surface normal encoding and event sequences
are represented using voxelgrid [55].
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5.5.1 Recording Setup

Objects from the ROD and SynROD datasets are provided as crops of variable
size and aspect ratio. Samples are pre-processed by extending the smallest
side of the image with padding that replicates the border to obtain squared
images regardless of the original aspect ratio. We resize these pre-processed
images to a fixed 256× 256 resolution, and extract event recordings from each
of them obtaining three collections: RealROD, SimRealROD, and SimSynROD.
We combine SimSynROD and RealROD to obtain the RGBE-Synth-to-Real
shift, where events in the source domain are obtained through simulation on
synthetic images and that of the target domain with a real camera from real-
istic images. The RGB-Synth-to-Real is created instead by pairing SimSynROD
and SimRealROD, obtained by performing event simulation in both source
and target domains.

real-rod. We replicate the setting proposed by Orchard et al. [116] for
converting RGB images to event-based recordings. A Prophesee’s HVGA
Gen3 (CD+EM) [76] Asynchronous Time Based Image Sensor (ATIS) config-
ured with default bias settings and mounting a Computar M0814-MP2 8mm3

lens is placed on a pan-tilt and positioned at approximately 23 centimeters
from an LCD monitor. We used a 2560 × 1440 76Hz IPS monitor with a
4ms minimum response time (LenovoTM ThinkVision® P27h-10), and set its
brightness and contrast settings to their highest values as proposed by Hu
et al. [130]. The pan-tilt4, analogous to the one used by Orchard et al. [116],
is composed of two Dynamixel MX-28 servo motors connected with each
other, and an ArbotiX-M Robocontroller board controls their speed and target
positions through serial communication.

We display still images from the original ROD dataset in a loop and record
each sample while performing the same saccades motion pattern described
by Orchard et al. [116] (i.e., three saccades motions of 100ms each in a
triangular pattern). A 300ms waiting time was added after transitioning to
the next image to ensure the image was correctly updated on the monitor,
and the event camera has settled after detecting the visual changes incurred
by changing the image. A 256 × 256 region of interest was set on the event
camera to restrict recorded events to a squared resolution. Grayscale images
from Exposure Measurement (EM) events were used, through an interactive
GUI, to fit the size of displayed images to the camera’s field of view before
recording.

sim+real-rod and sim+syn-rod. We then use the ESIM [168] simulator
to extract simulated events from both ROD and SynROD datasets obtaining
the SimRealROD and SimSynROD collections respectively. We follow the same
procedure used by Gehrig et al. [127] to obtain the simulated version of

3 https://computar.com/resources/files_v2/161/M0814-MP2.pdf

4 https://trossenrobotics.com/widowx-MX-28-pan-tilt

https://computar.com/resources/files_v2/161/M0814-MP2.pdf
https://trossenrobotics.com/widowx-MX-28-pan-tilt
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N-Caltech101. In particular, we replicate the same setting used to record real
samples within a renderer [167], mapping RGB images on a plane and then
moving the virtual event camera with the same saccadic motion to obtain
event streams. Notice that we do not use the adaptive frame interpolation
procedure proposed by Gehrig et al. [127] to upsample a low frame rate video
for later conversion, but instead directly set the renderer to produce a high
frame rate video. We generate 162 frames from each sample across the 300ms
of recordings, equivalent to 540 fps, and then use ESIM [168] to obtain event
recordings.

5.6 experiments

We conduct experiments over two different tasks, namely object classification
and semantic segmentation. We focus primarily on object classification and
use the N-Caltech101 dataset to compare with state-of-the-art approaches
under the E-Sim-to-Real shift. We extend this analysis to semantic segmen-
tation using the extension of the DAVIS Driving Dataset (DDD17) [138]
proposed by Alonso and Murillo [105]. We then use the proposed N-ROD
dataset to evaluate the DA4E framework under the RGBE-Synth-to-Real and
RGB-Synth-to-Real settings.

We evaluate the proposed DA4E method using several event representa-
tions. Since no prior work has studied the impact of domain shifts across
different representations, we decide to perform experiments on some of
the most common ones, both hand-engineered and learnable. We select the
HATS [85] and Voxel Grid images [55] for the first category, while the EST [92]
and the Matrix-LSTM [2] representation, introduced in the previous chapter,
for the second category. We refer the reader to Section 2.2.2 on page 18 and
Chapter 4 on page 71 for a detailed description.

In the following, we start by providing details about the datasets used and
then discuss the experimental validation we conducted.

5.6.1 Datasets

Apart from the N-ROD dataset already discussed in the previous section, we
conduct experiments with both the N-Caltech101 [116] and DDD17 [105, 138]
datasets. In order to evaluate the proposed approach under the E-Sim-to-Real
shift, we consider simulated extensions of both datasets as detailed in the
following.

n-caltech101. The Neuromorphic Caltech101 (N-Caltech101) [116] is
an event-based conversion of the popular image dataset Caltech-101 [142]
generated by recording the original RGB images using a real event-based
camera moving in front of a still monitor on which still images are projected.
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An extension of N-Caltech101 has recently been proposed by Gehrig et
al. [127], who obtained a simulated replica of the dataset by re-creating the
same setup used for recording real samples with the ESIM simulator [168].
We follow Gehrig et al. [127] and use these recordings as simulated source
data and that from N-Caltech101 as target real samples. We use the train
and test splits provided in the EST’s official codebase [92] and evaluate the
proposed approach by computing the top-1 accuracy on the test set of the
target real domain.

ddd17. The DAVIS Driving Dataset (DDD17) [138], recently extended
to semantic segmentation by Alonso and Murillo [105], is a set of real-
world recordings captured under different environmental, weather, and speed
conditions. Being recorded with a DAVIS event camera, it provides both
event streams and grayscale recordings. In recent work, Gehrig et al. [127]
exploit the available grayscale images to pair real events with simulated
event streams obtained with their pipeline for video to event conversion. We
evaluate our framework in semantic segmentation under the E-Sim-to-Real
shift by following Gehrig et al. [127] and utilizing simulated samples as
source data and those captured with the real camera as target data.

5.6.2 Implementation details

classification. We implement the proposed method within the PyTorch
[267] autodiff framework, using a ResNet34 [220] as the feature extractor
F in N-Caltech101 experiments, and a ResNet18 [220] in ROD ones, both
pre-trained on ImageNet. For a fair comparison with previous methods on
the RGB+D version of ROD, we use the same network configurations of
Loghmani et al. [284] for both the object recognition classifier G and the
network used in the pretext rotation task. In particular, G is a two-layers MLP

network with hidden size 1000, while the rotation classifier is a simple CNN
composed of two convolutional layers, with 100 channels and kernel size 1
and 3 respectively, followed by a two-layers MLP. All classifiers’ hidden layers
use batch norm [313] and ReLU as activation functions. We use dropout [314]
with 0.5 probability before the last fully connected layer and train them from
scratch starting from a Xavier initialization [256].

Event representations and RGB images going through the main backbone
F are preprocessed and augmented during training following the procedure
of Loghmani et al. [284]. In particular, we first resize the smaller side of
images to 256 pixels, keeping the original aspect ratio, and then randomly
crop a 224 × 224 region of the image, followed by a random horizontal flip.
We use the same resize procedure but a fixed center crop during testing.
Input images are normalized with the same mean and variance used for the
ImageNet pre-training, while we kept event representations un-normalized
as this provided improved performance.
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We use 9 bins for both voxel grids and EST representations, resulting
respectively in 3 and 6 views in MV-DA4E. The number of output channels
can be customized in MatrixLSTM. Therefore we set the layer to directly
produce 3-channel output representations and set the number of bins to 3 as
this configuration performed the best. Notice that, since HATS only provides
2 channels, without splitting the temporal frames into bins by default, we are
not able to apply the proposed multi-view approach with this representation.
We train all network configurations using SGD as the optimizer, batch size
32 and 64 for N-Caltech101 and ROD experiments, respectively, and weight
decay 0.003. We fine-tune the DA losses’ weights for each event representation
and DA method, reporting the accuracy scores for the best configurations
only, averaged over 3 runs with different random seeds.

semantic segmentation. We use the EV-SegNet [105] architecture as
backbone in semantic segmentation experiments by re-implementing the
original network in PyTorch [267] following the original Tensorflow [268]
codebase [315]. EV-SegNet is an encoder-decoder architecture similar to a
UNet [203], composed of an Xception [216] encoder and a lightweight decoder
with skip connections interconnecting the two. The event representation used
in the original EV-SegNet consists of a 6-channels 352 × 224 representation
containing, for each polarity, the number of events received in each pixel,
together with the mean and standard deviation of their timestamps. We use
this representation in our experiments as well as a traditional 3-bins voxel
grid for comparison. We use 50ms of events to build both representations as
in the original EV-SegNet design.

We follow Alonso and Murillo [105] and train the neural network by
performing augmentations during training. In particular, we randomly flip
representations horizontally with a 50% probability, scale them by a factor
s ∼ U (0.50, 2), perform random rotations of ±10◦ and randomly translate
them horizontally and vertically by ±20% of the original size. We train EV-
SegNet for 15 epochs with Adam [257] as the optimizer, using a batch size of
8 samples and a learning rate of 0.001, decayed until 1e−9 with a polynomial
scheduler of parameter 0.9. When performing adaptation with an adversarial
approach, we use 0.0001 as the discriminator’s learning rate and optimize the
adaptation losses’ weight for each representation and adaptation technique,
as in classification experiments.

5.6.3 E-Sim-to-Real Analysis

This section focuses on analyzing how different UDA methods perform in
reducing the E-Sim-to-Real shift under the proposed DA4E framework. We
analyze the performance of the UDA algorithms presented in Section 5.3 on
page 106 as well as their effect on different event representations. We perform
most of the analysis on the classification task to compare with previous works
and then test the proposed framework on semantic segmentation.
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Table 5.2: Target Top-1 Test Accuracy (%) of UDA methods on N-Caltech101. Bold:
representation’s highest result.

N-Caltech101 (ESIM(RGBreal) =⇒ EvCamera(RGBreal))

Method
Voxel

Grid
HATS EST

Matrix

LSTM

Source Only
baseline 80.99 58.32 80.08 82.21

MV-baseline 84.59 - 83.07 84.89

GRL [282]
DA4E 83.08 65.38 83.38 82.94

MV-DA4E 86.77 - 84.03 85.75

MMD [283]
DA4E 86.37 69.86 83.61 84.04

MV-DA4E 88.23 - 85.36 88.05

Rotation [290]
DA4E 79.13 61.52 80.69 83.57

MV-DA4E 86.63 - 84.49 85.7

AFN [285]
DA4E 84.49 69.96 83.59 85.0

MV-DA4E 88.3 - 85.92 87.59

Entropy [286]
DA4E 87.0 65.58 85.54 85.97

MV-DA4E 89.24 - 86.06 86.09

RealEvent 88.13 76.45 88.17 87.65

Supervised
MV-RealEvent 90.09 - 89.25 90.35

Object Classification

We assess the effectiveness of UDA algorithms in reducing the E-Sim-to-Real
shift using N-Caltech101 as a benchmark. We first analyze to what extent
the E-Sim-to-Real shift impacts performance by comparing the Source Only
baseline against the Supervised upper bound. Source Only refers to the perfor-
mance of a network trained only on simulated data (the source domain) and
then tested directly on real events (the target domain) without any adaptation.
Instead, the Supervised benchmark represents the performance obtained by
directly training the network on the target domain with supervision. We con-
sider this an upper bound since labels on the target domain are typically not
available for training. UDA methods seek to reach this performance without
supervision by only relying on improving the alignment between source and
target features’ distributions.

In Table 5.2, we show the performance of GRL [282], MMD [283], Rota-
tion [290], AFN [285] and Entropy [286]. For each method, we report the
results obtained with (MV-DA4E) and without (DA4E) the proposed multi-
view approach. We consider the effect of UDA strategies on two non-learnable
event representations (VoxelGrid and HATS), and two learnable ones (EST
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(a) Source-only (b) DA4E

Figure 5.7: t-SNE visualization of N-Caltech101 [116] features from the last hidden
layer of the main classifier. Red dots: source samples; blue dots: target
samples. When adapting the two domains with the proposed DA4E (b),
the two distributions align much better compared to the non-adapted
case (a).

and MatrixLSTM). The empirical evaluation performed allows us to answer
the following research questions.

is uda (da4e) useful in reducing the e-sim-to-real gap? Accord-
ing to Table 5.2 on the facing page, UDA methods employed within DA4E
outperform the Source Only baseline in almost all circumstances and for all
event representations. They improve performance by up to 6% on VoxelGrid,
11% on HATS, 6% on EST, and 4% on MatrixLSTM. Combining voxel grids
and the Rotation approach under the DA4E setting is the only instance where
domain-adapted performance is below the Source Only baseline. We explain
this behavior by noticing that Rotation gains most of the performance by
encouraging the network to focus on the geometric structures of the objects,
as this helps the network recognize orientation. As opposed to images, event
streams already focus on the objects’ structural and geometrical features, as
they behave as edge detectors under motion. Although Rotation could help
emphasize these structures even more in deep layers of the network, the
event data bias towards these geometric structures could be the reason for
Rotation’s reduced gain. Moreover, since N-Caltech101 samples are captured
with predefined motion matters, the original orientation of the sample could
easily be recognized by looking at polarity patterns on the edges. This char-
acteristic leaves the network the possibility of learning a trivial solution that
may not encourage adaptation as much as it does on natural images.

Except for this only case, all UDA methods improve performance over the
baselines. We provide a visual representation of how the features distribution
change after adaptation in Figure 5.7. We compute samples’ features from
both source and target domains using the feature extractor of the source only
baseline and that adapted using Entropy. Then we perform a t-Distributed
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Stochastic Neighbor Embedding (t-SNE) [316] visualization of these features.
When adapted, features overlap better, showing the ability of the feature
extractor to compute domain-invariant features.

how much does the e-sim-to-real gap affect event representa-
tions? Interestingly, we can see that not all representations suffer in the
same way from the domain shift. For instance, HATS is the representation
suffering the most from the E-Sim-to-Real shift, as performance decreases by
up to 18% when testing directly on the target domain (Source Only) rather
than on the source (Supervised). Intuitively, the reason is intrinsic in the
representation itself. Indeed, when representing events with HATS the tem-
poral resolution is lost (see Section 2.1), potentially causing a degradation in
performance when testing on data belonging to a different distribution. By
contrast, MatrixLSTM seems to be the representation less affected by the shift.
Its performance decreases by only a 5%, compared to the 8% and 7% of EST
and voxel grids, respectively, under the DA4E setting. Notice that, in these
experiments, we were able to attenuate the difference between learnable and
hand-engineered representations by performing a thorough hyperparameters
search across all representations. Learnable representations were still easier
to finetune, showing their advantage over hand-engineered ones.

is the proposed multi-view approach (mv-da4e ) effective? Ta-
ble 5.2 on page 124 shows that applying the multi-view approach MV-DA4E
significantly improves over the DA4E configuration in all experiments, re-
gardless of the representations and DA strategies used. Crucially, using a
multi-view approach improves performance even in the Source Only baseline,
where no adaptation is performed, showing that exploiting general low-level
feature extractors is essential for better performance across domains. These
results prove the validity of the proposed method, confirming the claims
made in Section 5.4.3 on page 116. Interestingly, MV-DA4E not only provides
an improvement in the cross-domain scenario but also improves the intra-
domain (Supervised) one. Thus, we believe this approach could be regarded
as a general way to handle event representations when pre-trained features
are involved, regardless of potential domain shifts. Finally, we highlight that
by employing MV-DA4E with Entropy using voxel grids as an event repre-
sentation, we are able to almost completely close the E-Sim-to-Real shift on
N-Caltech101, as our adapted network reduces the shift to less than 1% of
performance loss against the supervised upper bound.

We show the effect of adapting featured with the MV-DA4E approach in
Figure 5.8 on the facing page, where we compute the Gradient-weighted
Class Activation Mapping (Grad-CAM [317]) on several N-Caltech101’s target
domain samples. Grad-CAMs show regions of the input event representation
the network believes are the most representative of the class being predicted.
When no adaptation is performed, the network often focuses on parts of
the background or areas of the object that are clearly not representative of
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Source Only MV-DA4EMV-DA4ESource Only

Figure 5.8: Grad-CAM [317] visualizations on several real N-Caltech101 samples. In
each triplet we show the input event representations (voxel grid [55]),
the activation maps when the network is trained on simulated data only,
and those obtained by training with MV-DA4E.

the class. This condition significantly changes when MD-DA4E is applied.
Indeed, although the network is used to classify target samples, it is still able
to focus on the salient part of the event stream, suggesting its benefits in
feature extraction capabilities.

how does our strategy compare to approaches acting on the con-
trast threshold? Several methods in the literature [127, 281] address
the Sim-to-Real problem by exclusively acting on the contrast threshold C
used during event simulation. Since we operate with a fixed threshold, a
possible question is whether our results merely derive from an optimal se-
lection of C or stem from our choice to favor adaptation by working at the
feature level. To answer this question, we run the DA4E frameworks with
three choices of C, using voxel grid as representation and all UDA methods.
We select C = 0.06 following the initial choice of Gehrig et al. [127], we find
the optimal parameter C = 0.15 using the technique proposed by Stoffregen
et al. [281], as well as randomly sample C ∼ U (0.05, 0.5) using the solution
of Gehrig et al. [127].

Without additional adaptation, the performance obtained training the
networks with these three parameter choices constitutes the baselines. Results
are reported in Table 5.3 on the next page. We run the baselines on both
basic and multi-view network configurations (first two rows of the table) and
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Table 5.3: Target Top-1 Test Accuracy (%) of UDA methods w.r.t. to methods that
act on the contrast threshold C.

N-Caltech101 (ESIM(RGBreal) =⇒ EvCamera(RGBreal))

Baselines C=0.06 C=0.15 [281] C∼ U [127]

Source only
baseline 76.81 80.99 82.29

MV-baseline 83.12 84.59 84.93

Our approach w/ C values: C=0.06 C=0.15 C∼ U

GRL [282]
DA4E 80.89 83.08 81.91

MV-DA4E 84.93 86.77 86.45

MMD [283]
DA4E 83.84 86.37 84.38

MV-DA4E 86.94 88.23 87.31

ROT [290]
DA4E 80.05 79.13 80.36

MV-DA4E 86.31 86.63 87.08

AFN [285]
DA4E 84.38 84.49 84.3

MV-DA4E 87.71 88.3 88.17

Entropy [286]
DA4E 85.26 87.0 85.16

MV-DA4E 88.38 89.24 88.61

then combine these approaches with the DA4E framework. Our approach
consistently and largely outperforms the baselines for every choice of C,
highlighting the effectiveness of approaching DA at the feature level. Even
if samples are simulated with a bad choice of contrast threshold (C = 0.06),
our basic framework (DA4E) can still achieve an 85.26% accuracy, filling an
8.45% gap against the Source Only baseline, contrary to other approaches
that only achieve a maximum accuracy of 82.29% (first row of the table).
When the proposed framework is combined with previous methods (last
two columns), performance is improved even further, demonstrating the
complementarity of our technique with C-only based approaches. Similarly,
the multi-view approach improves performance regardless of the initial choice
of C, significantly reducing the network’s sensitivity to C variations.

how much target data is needed to perform adaptation? The
framework proposed in this chapter still makes use of target data, captured
with a real device, to perform adaptation. While this may seem a limitation, as
one has to record data to train the system, the effort required is no more than
that necessary to use the system in a real-world environment. Indeed, target
data does not have to be labeled or share the same environments and the
exact objects used during training to perform adaptation, being all methods
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Figure 5.9: Difference in terms of performance based on the percentage (%) of target
data used during training, obtained with constant threshold C = 0.06.

Table 5.4: Top-1 accuracy (%) of the proposed DA4E and MV-DA4E over the baseline
(source only) on extended Partial DA, Domain Generalization, and S ∩
T = ∅ on the N-Caltech101 dataset.

N-Caltech101 (ESIM(RGBreal) =⇒ EvCamera(RGBreal))

Method Partial DA Universal DA DG

Baseline 79.59 68.46 76.81

MV-baseline 83.76 82.51 83.12

DA4E 84.84 72.58 79.06

MV-DA4E 87.84 84.07 84.95

RealEvent 87.85 85.73 88.13

MV-RealEvent 90.91 89.89 90.09

unsupervised and unpaired. Still, a legitimate question is how much target
data the framework needs in order to perform adaptation successfully.

In Figure 5.9 we showcase the scalability of our approach when the access
to target data is limited. We show how the performance of the proposed
methods changes when only a percentage of target data is available during
training (25%, 50%, 75%). It can be noticed that an improvement by up to 4%
over the Source Only baseline (0% of training target data) is guaranteed, even
when a very small percentage of target samples is available.

Moreover, we remark that the UDA framework can be further extended
towards more realistic settings where the target label space is not the same
as the source (as in Universal DA [318], Partial DA [319, 320] and Open Set
DA [321, 322]), or when target data is not available at all during training
(as in Domain Generalization [291]). A general overview of these settings is
provided in [318]. To prove the proposed MV-DA4E can be easily extended
to the above-mentioned settings, in Table 5.4 we provide some preliminary
results showcasing how the system performs under:

• Universal DA: target data available during training is from a label space
T disjoint from that of the source domain S (S ∩ T = ∅). We split the
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set of classes in half and use, during training, simulated N-Caltech101

samples from the first set as the source domain and real ones from the
second set as the target. Testing is performed using target samples from
the first half instead, which were not available by the time of training.
UDA is used to make features of the two domains look as if they were
sampled from the same distribution, despite being from two different
label spaces.

• Partial DA: the label space of the target domain T is a subset of that of
the source domain S (T ⊂ S). We use the same target as in the previous
setting (half of the label space) but use simulated N-Caltech101 samples
from all classes as the source domain.

• Domain generalization (DG): the target domain is not accessible during
training. Similar to a Source Only baseline, we only use simulated
samples [127] from N-Caltech101 during training and then directly test
on real N-Caltech101 samples. During training, however, we adopt self-
supervised adaptation methods on the source domain to encourage the
extraction of general features that could potentially benefit an unseen
target domain.

We use Entropy in the Partial DA setting, AFN in Universal DA, and
Rotation for the domain generalization setting since pretext tasks are com-
monly used in this context [323]. In this last case, the pretext task is only
applied to the source domain to promote the extraction of general features,
as the target domain is not available. Noticeably, the proposed DA4E and
MV-DA4E outperform the Source Only baseline in all settings, demonstrating
the potential of this approach even in more complex scenarios. Results under
the Universal DA setting (S ∩ T = ∅) demonstrate that adaptation can be
performed effectively even if real-world data, by the time of training, is not
available for the set of classes the system must be able to predict. This is a typ-
ical circumstance since one may wish to train a system to recognize objects of
an RGB dataset, converted through simulation, but real-world data captured
with the specific camera the system must be deployed on is only available for
a different set of classes or environments. Results on domain generalization
further generalize this scenario to the case in which no real-world data is
available during training. We show that using a self-supervised pretext task
can be used to promote the extraction of domain-invariant representations
that enable better performance even on an unknown target domain.

Semantic Segmentation

We designed the DA4E framework primarily around the object classification
task. UDA methods are well-established in this field, and a variety of different
methodologies have been offered over the years, allowing us to conduct a
thorough analysis of these methods on event-based data. Despite our choice



5.6 experiments 131

Ground Truth Source Only DA4E w/ Adv. DA4E w/ Ent. DA4E w/ ADVENT

Figure 5.10: Qualitative semantic segmentation results on the DDD17 dataset. Each
row displays the grayscale image of the scene, the ground truth labels,
and the predictions obtained in the Source Only setting, as well as the
results obtained using three different UDA techniques.

of focusing on classification, the proposed framework is still general and
could potentially be extended to address even more challenging tasks. Indeed,
unsupervised domain adaptation is typically achieved in more complex tasks
by extending methods designed for classification while still maintaining the
overall framework mentioned in Section 5.4.2 on page 113. That is the case of
semantic segmentation, where multiple extensions of UDA methods have been
proposed, such as the ADVENT [303] and adversarial-based [302] approaches
discussed in Section 5.3.6 on page 110.

To demonstrate that the proposed approach is general, we provide pre-
liminary results on semantic segmentation using the DAVIS Driving Dataset
(DDD17) [138], with the extension proposed by Alonso and Murillo [105]
serving as the target domain, and the simulated version used by Gehrig et
al. [127] as the source. We follow the analysis of Gehrig et al. [127] and employ
EvSegNet [105] as the semantic segmentation network and a temporal win-
dow of 500ms for prediction. We use the original EVSegNet representation, as
done by Gehrig et al. [127], as well as voxel grids. We adapt DA4E to semantic
segmentation by integrating, within the DABlock, entropy minimization [286],
the approach of Tsai et al. [302], who use an adversarial discriminator on
semantic segmentation logits, and the ADVENT [303] method combining the
previous two.
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Table 5.5: Top1 Accuracy (%) and mean Intersection over Union results on the
DDD17 dataset.

DDD17 (ESIM(RGBreal) =⇒ EvCamera(RGBreal))

EvSegNet VoxelGrid

mIOU Top1 Acc mIOU Top1 Acc

Source Only 0.477 85.95 0.428 85.80

Adv. [302] 0.509 87.67 0.482 86.21

ADVENT [303] 0.514 87.74 0.490 86.72

Ent. [286] 0.498 86.95 0.496 86.39

Supervised 0.548 89.76 0.530 89.12

Vid2E [127] 0.482 86.03 - -

As shown in Table 5.5, all the UDA methods improve over the Source Only
baseline, which, we recall, consists of training on source data only (Sim), and
then testing directly on unlabelled target data (Real), without performing
any adaptation strategy. The proposed framework achieves improved results
regardless of the event representation used, outperforming the method pro-
posed by Gehrig et al. [127] when no finetuning on the target domain is
applied. Qualitative results are provided in Figure 5.10 on the preceding
page, where we compare predictions obtained by only training on simulated
data against that obtained after adaptation. Unsupervised domain adaptation
improves the network’s prediction of foreground objects (i.e., cars, pedestri-
ans, and street signs) and background areas, which are often misclassified
when no adaptation is used (Source Only).

5.6.4 RGBE and RGB Synth-to-Real Analysis

This section focuses on studying the RGBE-Synth-to-Real shift under the
proposed DA4E framework. We make use of the N-ROD dataset proposed
in Section 5.5 on page 117, which is to date the only classification dataset
for event-based cameras enabling this type of analysis. We use the DA4E
framework with the same settings as in the previous experiments but only
focus on the voxel grid representation, as it provided a good compromise
between accuracy and training time as well as the best performance when
combined with UDA methods on N-Caltech101. In the following, we focus
first on a single modal evaluation and then study how multimodal (RGB+E)
data can be used to improve performance on the RGBE-Synth-to-Real shift.
We then analyze how the Synth-to-Real shift on RGBs impacts event-based
neural networks’ performance with the simplified RGB-Synth-to-Real setting.
In this case, the shift only happens between image domains, as the event
generation process is the same (i.e., simulated) for both the shifts. The results
we obtained are reported in Table 5.7 on page 135.
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Table 5.6: Top-1 accuracy (%) of UDA methods on the RGBE-Synth-to-Real shift.
Bold: highest mean result, underline: highest single- and multi-modal
results. indicates the improvement of the avg of UDA methods over the
baseline Source Only.

N-ROD
(
ESIM(RGBsynth) =⇒ EvCamera(RGBreal)

)
Single-modal Multi-modal

Method RGB Depth Event RGB+D RGB+E

Source Only 52.13 7.56 21.78 47.70 50.78

GRL [282] 57.12 26.11 33.09 59.51 57.15

MMD [283] 63.68 29.34 42.05 62.57 61.78

Rot [290][284] 63.21 6.70 31.26 66.68 68.54

AFN [285] 64.63 30.72 55.12 62.40 64.04

Entropy [286] 61.53 16.79 50.14 63.12 64.08

Avg
62.03 21.93 42.33 62.86 63.12

+9.9 +14.4 +20.6 +15.2 +12.3

calculator camera cell phone cereal box food bag

Figure 5.11: Sample images from SynROD [284] showing occlusions and multi object
scenes. The label indicates the class associated to each sample.

is the shift impacting modalities equally? We begin by comparing
the event modality’s performance against that of other modalities accessible
in N-ROD, namely RGB and depth data. Contrary to the analysis performed
on N-Caltech101, here we cannot assess the domain shift directly, since,
following the setup of Loghmani et al. [284], the target domain does not
provide training data to evaluate the performance of a supervised baseline.
Nevertheless, we can see from Table 5.7 on page 135 that the event modality
performs worse than RGBs, but better than the depth. The ROD setting, in
fact, is particularly challenging for modalities other than RGB. In contrast to
N-Caltech101 and DDD17, the environment and the objects present in the two
domains are distinct. The synthetic set contains object occlusions, random
background, and object instances that may not be present in the target domain,
even if from the same category. Therefore, networks employing RGB data
may better exploit the ImageNet pretraining, giving them an advantage over
other modalities. Nonetheless, the event modality still outperforms the depth,
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which is frequently utilized as an alternative, or complementary, modality
in cross-domain scenarios. Few selected samples showing these challenging
conditions are provided in Figure 5.11 on the preceding page.

are uda methods effective on events? We follow the analysis of
Loghmani et al. [284] of depth data adaptation and apply the proposed DA4E
framework to adapt event data using all classification techniques discussed
in Section 5.3 on page 106, as done for N-Caltech101. Results show that,
among all modalities, the event modality is the one receiving the highest
benefits from UDA methods. Indeed, performance improves, on average, on a
20.6% against the Source Only baseline, while RGB and depth only record
an increment of 9.9% and 14.4%, respectively. The event modality, triggered
by egocentric motion, focuses more on geometric components and object
shapes, contrary to RGB data which is biased towards texture [324]. These
intrinsic peculiarities make UDA techniques more effective on events, as
shape information is per se more robust [324] in the transition from the
synthetic to real domains and thus easier to be aligned than the information
encoded in RGB. Moreover, despite the events’ disadvantages compared to
RGBs discussed before, they still reach remarkable results thanks to UDA
techniques. Most notably, events show a consistent improvement when using
all UDA techniques, in contrast to the depth modality, which not always
benefits from them. This result proves that events can be a good alternative
to RGB in contexts where the latter is limited.

how do events combine with other modalities? It is well known
that the complementarity of different input modalities, such as RGB and
depth, can be exploited to improve adaptation performance in cross-domain
scenarios [284]. Since multimodal RGB-E adaptation is still unexplored in
the literature, we propose a first approach for combining the two modalities
by relying on methodologies commonly used for RGB-D data [325] (see
Section 5.4.2 on page 113). We use the same adaptation methods as for the
single modal analysis, making sure to use multimodal variants whenever
available. In particular, we use Relative Rotation [284] instead of the simpler
variant [290] in these experiments. The results in Table 5.7 on the next page
show that the proposed DA4E approach performs well even in multimodal
setting, as all methods consistently improve over the Source Only baseline,
as in the single modal setting. The RGB-E approach performs better than
RGB-D on average, reaching a maximum performance of 68.54% against the
66.68% of the RGB-D network and improving the RGB baseline by 4%.

Rotation [290] provides interesting results to be discussed. Indeed, when
absolute rotation is applied to each modality individually, this method is
the one achieving the lower performance gain if compared to all the others.
Instead, when extended to the RGB-E context by applying the Relative Rotation
[284] between the two modalities, it interestingly reveals to be the UDA
method performing the best. This brings to light the importance of leveraging
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Table 5.7: Top-1 accuracy (%) on events, in two different scenarios: RGBE-Synth-to-
Real and RGB-Synth-to-Real. In bold the highest mean result.

N-ROD
(
ESIM(RGBsynth) =⇒ (ESIM vs. EvCamera)(RGBreal)

)
Source Target Source Only GRL MMD Rot AFN Entropy Avg

ESim ESim 40.47 44.52 48.29 42.98 53.50 49.29 47.68

ESim EvCamera 21.78 33.09 42.05 31.26 55.12 50.14 42.33

over the complementarity of multiple modalities, even in the event field. We
believe this result emphasizes the need to further push research towards
networks and adaptation strategies specifically designed to make the two
modalities efficiently cooperate.

how much is the rgb shift impacting events? Under the RGBE-
Synth-to-Real shift, using simulation on the source domain and a real event
camera on the target one indirectly introduces the E-Sim-to-Real shift over
the pre-existing shift between synthetic and realistic RGB images. In order to
understand how combining these two shifts affects performance, we compare
RGBE-Synth-to-Real results with those obtained under the simplified RGB-
Synth-to-Real shift, where the shift on events is removed by performing
simulation on both domains. We can consider this experiment as a relaxed
setting where the E-Sim-to-Real gap is not present. To this purpose, Table 5.7
compares single-modal results obtained under these two settings. Without
any kind of adaptation (Source Only), performance decreases by 18.69% when
passing from the RGB-Synth-to-Real to the RGBE-Synth-to-Real shift, which
quantifies the E-Sim-to-Real gap. The proposed approach reveals once again
the effectiveness of UDA techniques in the event context, which consistently
improve performance, reducing this gap to only a 5%. This emphasizes the
importance of developing broad approaches for event adaptation capable of
reducing domain shifts regardless of the cause of the gap, as in the suggested
approach.

5.7 conclusions

In this chapter, we suggest an alternative solution to the recent research
problem of bridging the Sim and Synth to Real gaps for event cameras. We
propose to tackle this issue as a domain shift and demonstrate that addressing
the problem at the feature level is more effective than operating on simulation
hyperparameters. To this end, we propose DA4E, a comprehensive frame-
work for even-based adaptation that integrates well-known UDA methods
with popular event-based representations. We benchmark the framework on
both classification and semantic segmentation tasks, using the N-Caltech101
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[116] and DDD17 [105, 138] datasets and achieving better results than other
approaches acting on simulation only. We build on these results and propose
MV-DA4E, a simple yet effective variation of the framework that enhances
resilience against domain shifts by improving the transferability of ImageNet
pre-trained feature extractors. Finally, as synthetic to real domain shifts have
not been extensively studied in event-based vision, we propose N-ROD as a
novel dataset for this investigation and demonstrate that UDA approaches are
once again successful in addressing these shifts. We believe that this work is a
valuable starting point for the community, and we hope it could ignite further
research towards studying novel approaches for event-based adaptation and
multimodal event integration.



6 C O N C L U S I O N S A N D F U T U R E W O R K S

In this thesis, we focused on deep learning approaches for event-based vision.
We discussed the importance of event representations, both at the input
and latent layers of a network, and showed that by concentrating on these
aspects, significant advances toward more effective and efficient processing
are possible.

Asynchronous Convolutional Neural Networks

In Chapter 3, we focused on efficiency during computation and proposed a
novel approach for computing hidden layers’ representations incrementally,
exploiting the differential nature of event streams. Traditional deep learning
systems for event-based vision trade off efficiency for accuracy, integrating
events into frame-like representations and then utilizing conventional frame-
based CNNs for synchronous computation. Although this strategy has allowed
the event-based vision field to develop in a number of visual tasks, these
results are still purely theoretical in the sense that they can only be achieved at
far lower rates than an event camera may theoretically enable. Our technique
constitutes a first step towards unlocking state-of-the-art performance even
at low latencies, effectively exploiting event-based cameras’ benefits without
sacrificing accuracy.

Aiming at this result, we took inspiration from Spiking Neural Networks
(SNNs) and proposed a mechanism to convert a deep neural network trained
on frame-like event representations into a dynamical system capable of
producing the same predictions but through incremental and asynchronous
computation. We achieved this by enhancing traditional convolution and
max-pooling layers with an internal memory storing the previous layer’s
output. Asynchronous computation is attained through a set of update rules
that allow the network’s state to be moved forward in time, asynchronously,
and the layer’s representations to be sparsely updated based on incoming
events. Since these layers produce identical predictions, they can substitute
conventional ones without any adaptation or additional training steps, thus
enabling traditional approaches to enjoy asynchronous computation with the
same accuracy.

We showed promising results when comparing our event-based layers
against traditional ones under equally optimized code on the CPU. Our work
inspired Messikommer et al. [87], who improved event-based layers by depart-
ing from the SNNs inspiration and employing recurrent event representations
and submanifold sparse convolutions [263] to increase sparse computation

137
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and efficiency even further. However, as for our solution, these layers still
perform slower than a traditional neural network when implemented with
highly parallelized deep learning frameworks or when leveraging GPU com-
putation. An exciting area of research is to investigate the potential of these
layers when implemented on dedicated hardware, such as FPGAs, capable
of exploiting the asynchronous and efficient processing promised by this
approach. Toolchains able to automatically convert neural networks built
using popular deep learning frameworks into optimized implementations
compatible with hardware accelerators are already available in the literature
[326–330]. A further step towards making these layers more accessible is to de-
velop a similar solution for automated deployment of deep neural networks
leveraging event-based layers onto optimized hardware designs, potentially
unlocking the use of such neural networks in real-world applications.

Our work focused explicitly on optimizing convolutional and max-pooling
layers, as they are the most fundamental yet widely used operators in deep
architectures. However, the adoption of more advanced layers, such as Con-
vLSTMs [192] or other recurrent variants [20, 331], is steadily increasing in
event-based networks [57, 58, 104, 108] to take advantage of their temporal
modeling. These are related to our event-based layers in that they also in-
corporate a memory, despite not enabling sparse computation. Event-based
versions of these units might broaden our framework’s applicability to more
advanced networks and potentially enable hybrid designs where memory
accumulation is learned, such as that of Gehrig et al. [58] or our MatrixLSTM.

Learning Representations for Event-based Neural Networks

In Chapter 4, we focuses on events’ encoding and proposed a novel fully-
differentiable representation for event-based cameras. We aimed at improving
the performance of existing event-based neural networks with a flexible solu-
tion compatible with most deep learning architectures. Event-based neural
networks still lag behind conventional image-based systems when only task
performance is considered, especially in tasks that largely rely on appearance.
This gap is not caused by limits of the sensor, as it even conveys more visual
information than a traditional device, but rather by the processing algorithms,
which are often not optimized to fully exploit event data. Indeed, the majority
of event-based networks still rely on hand-engineered event representations
that may not encode all the information necessary for effectively solving
a task. While computing efficiency is frequently the major focus in event
processing, event-based systems must nevertheless strive for state-of-the-art
performance to prove their competitiveness against traditional cameras in
real-world applications.

With the goal of maximizing performance, we proposed to learn how
to effectively interface events with a CNN system by convolving a Long
Short-Term Memory (LSTM) cell over the stream of events. We exploited
the memory mechanism of LSTM networks to incrementally and sparsely
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convert event streams into a 3D representation that can directly be used
as the input of state-of-the-art frame-based architectures. We demonstrated
improved performance in both high-level and low-level tasks, regardless of
the architecture used for prediction. Exploiting the LSTM cells’ natural ability
to handle sequential data and ad-hoc optimized operations, the proposed
system can compute event representations efficiently, almost matching the
efficiency of simpler, hand-engineered solutions.

Despite its ability to learn from long-term event streams, aided by its win-
dowing mechanism and by the LSTM operating principles, training MatrixL-
STM could still become impractical when dealing with very long sequences.
Indeed, since training is performed end-to-end, all event features must be
kept in GPU memory together with the rest of the network to allow for effec-
tive backpropagation. This practically restricts the length of sequences used
during training, potentially preventing complex dynamics from being learned.
Annamalai et al. [332] partially solves this issue by training MatrixLSTM as a
recurrent autoencoder, thus removing the need to learn from a downstream
prediction network and enabling the extraction of task-independent represen-
tations. Along these lines, an exciting research direction is that of exploiting
the similarities between event-based and Natural Language Processing (NLP),
in their sequential nature, for the design of event representations that could
better capture both short-term and long-term temporal relations. An option
could be using multiscale recurrent neural layers [333–336] to model temporal
dynamics at different time-scales, or taking inspiration from language models
[337, 338] by learning to predict the future event dynamics to improve event
understanding. Taking inspiration from this field, we are now exploring
the use of Transformer [187] based attention mechanisms to model event
sequences. These have indeed demonstrated outstanding performance even
on data modalities different from text, as we also proved with our work on
skeleton-based action recognition [5, 6].

Learning Domain-invariant Networks with Event-based Simulation

In Chapter 5, we focused again on event representations, both at the input
and hidden layers, but this time we moved away from their design and
focused instead on studying them from a learning perspective. Learning-
based methods have played a significant role in establishing the efficacy of
event-based cameras in a variety of challenging conditions where standard
cameras typically struggle. However, this level of robustness can only be
achieved if a sufficient amount of annotated data is accessible, hampering
event-based cameras’ potential in many applications. As a result, event-based
vision is increasingly relying on event simulation to enable the use of event-
based devices even in tasks where available data is still scarce. Nonetheless,
non-idealities in event simulation often cause performance degradation when
transitioning from simulated to real-world conditions. Given the growing
interest in using event-based systems in several fields of robotics, studying
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the effect of these inconsistencies, as well as designing effective solutions to
mitigate them, is becoming increasingly important in event-based vision.

We proposed to study these aspects with the tools of Unsupervised Domain
Adaptation (UDA), reducing all these issues to the analysis of two specific
domain shifts. We looked specifically at performance losses caused by training
on simulated events when event simulation is used to convert existing image-
based datasets as well as synthetic scenes acquired through rendering. We
proposed to tackle these shifts using UDA methods. We designed DA4E, a
general framework for event-based adaptation unifying several well-known
techniques, and demonstrated its flexibility by reducing both shifts on several
benchmarks as well as a novel dataset.

Our analysis shows that UDA methods are a valuable tool for tackling
domain shifts induced by simulation and prove that methods designed for
image-based networks can be applied to event representations indistinguish-
ably, without any modification. Despite the encouraging results and the
novel dataset released, however, our analysis is limited in studying simplified
settings where motion patterns are shared between the source and target do-
mains and where HDR and motion blur conditions are rare. Since simulation
is often used to convert existing image-based datasets, where these conditions
may exist, a future research direction is that of studying how simulation in
the presence of these artifacts affects prediction performance. Along this line,
we are currently studying [8] the use of simulated events in the context of
first-person action recognition with the proposed E2(GO)MOTION suite and
a novel extension of the EPIC-Kitchens dataset [339]. We show that event
data can help reduce image-based shifts, even if completely simulated, as it
focuses on motion, which is typically more robust than appearance, and it
inherently highlights shapes and structures of the objects over the texture,
which is typically the primary cause of shifts in the image domain [324]. We
plan to supplement the dataset with real-world recordings to broaden the
analysis of the simulation’s impact and include the challenging setting of
first-person recordings, where fast camera motion typically affects traditional
cameras and could, in turn, impact event simulation as well.

Finally, a future line of research could also be that of designing novel
adaptation mechanisms specifically designed for events. Following the work
of Loghmani et al. [284] on depth adaptation, one solution could be to design
multimodal pretext tasks leveraging the relation between event streams and
videos, for instance, through motion [202, 264] similarly to what has been
proposed by Messikommer et al. [190]. Another possibility could be to focus
on events alone and exploit intrinsic properties of event streams, e.g., the
relation between polarity and motion direction through time, and design
transformations for unsupervised tasks as typically done with images [290].
Moreover, while we focused specifically on representation-based networks,
future efforts could be devoted to studying GCNN [102, 103] and PointNet
[90, 188] based architectures which, by relying on raw event features, could
be more affected by these shifts.
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