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Abstract 

Agricultural drought is one of the most severe natural disasters that endanger humans 

and put food and water security at risk, resulting in a negative impact on livelihoods 

and the economy. 

 

In Sudan, where the agriculture represents the backbone of the national economy and 

the dominator of the labor section, the need for continuous and effective monitoring 

and assessment of the spatial and temporal distribution of the drought and its effect 

on the agricultural regions is becoming a necessity for the future national and regional 

related agricultural, social, and economic plans.  Such evaluation analysis will assist in 

development of successful drought mitigation policies. 

 

In this study, we analyzed the spatial and the temporal distribution of the drought on 

three agricultural regions (Algazeera, North Kurdufan, and Algadaref) states in Sudan 

over the period between 2009 and 2019. 

 

The NDVI records generated from the MODIS 8-days 250-m and Landsat 7 16-days 30-

m were used to derive a linear regression model that describes the relationship 

between the NDVIs from the two satellites. The linear regression model was then 

applied on a pixel basis to generate fused NDVI records by blending the MODIS and 

Landsat NDVI images. The resulted fused NDVI imageries have the temporal 

resolution of MODIS and the spatial resolution of Landsat and show a high correlation 

with the MODIS NDVI records over the agricultural regions (0.99, 0.97, and 0.98 in the 

Algazeera, North Kurdufan, and Algadaref regions respectively). 

 

Subsequently, the Vegetation Condition Index (VCI) was extracted from the three 

long-term NDVI records, and based on a threshold on the VCI values, monthly and 

annual mean drought severity and duration maps were generated for the study 

regions. Furthermore, aggregated drought frequency images were built to define the 

most vulnerable areas to the drought. 
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The spatial distribution of the drought maps indicates that each of the three regions 

was hit by the drought. However, the mean percentages of the affected cropland in the 

three regions estimated using the Landsat sensor were very close (approximately 15% 

of the region’s cropland in the years where the drought impact was significant and 

10% when the drought was light). While the MODIS estimates were far higher (17%, 

20%, and 15% in the vulnerable years and 10%, 12%, and 8% in the good vegetation 

condition years in Algazeera, North Kurdufan, and Algadaref regions respectively), 

The drought counter images defined the northern parts of North Kurdufan, the eastern 

parts of Algazeera, and the northern parts of the Algadaref regions as the most 

vulnerable areas to drought. 

 

The estimated temporal distribution coincided with the national and global records 

that indicate that the season of 2015 was the strongest drought event. In 2009, the 

drought was witnessed in both the rainfed and irrigated regions, while the one in the 

2011 season was limited to Algadaref and Aljazeera regions. On the contrary, the 2010, 

2012, 2016, and 2018 seasons were generally the most drought-resistant years. 

Throughout the study period, most of the cultivated areas in Algadaref state were hit 

by the drought. 

 

Moreover, the annual mean VCI maps showed that the agricultural drought had an 

annual occurrence frequency over the three regions. In addition, the onset of the 

drought over the analyzed period was detected to be prior to the agricultural season 

beginning. 

  

The average of the estimated percentage of the population was between 3% and 5% in 

these two regions, while showing stability in the North Kurdufan region (the 

percentage of the affected population was below 1.5%). 

 

The findings also demonstrated the potential of the MODIS Land Dynamics dataset to 

determine cultivation phenological information, the suitability of the Vegetation 

Condition Index from the three remotely sensed NDVIs in identifying drought onsets, 

duration, and distribution, and the capability of Landsat-based VCI maps to detect 

extreme vegetation conditions. As well, the 30-m fused NDVI records, due to their 

benefit from the higher temporal resolution of MODIS and the higher spatial 

resolution of Landsat, can be integrated into an early warning and drought monitoring 

system. 

 

Keywords: Drought monitoring, Spatiotemporal analysis, Sudan, Landsat, MODIS, 

Drought early warning system. 
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Abstract in lingua italiana 

La siccitàè è uno dei più gravi disastri naturali che mettono a repentaglio la 

sopravvivenza dell'uomo, compromettendo la sicurezza alimentare e idrica, con un 

impatto negativo sui mezzi di sussistenza e sull'economia. 

Il Sudan é un paese nel quale l'agricoltura rappresenta la spina dorsale dell'economia 

nazionale, presentandosi come il settore dominante nel mondo del lavoro. 

 

In questo contesto si ha la necessitá, per il futuro nazionale e regionale del paese, di 

attuare attraverso dei piani agricoli, sociali ed economici, un monitoraggio continuo 

ed efficace, oltre che una valutazione della distribuzione spaziale e temporale della 

siccità e dei suoi effetti sulle singole regioni agricole. Tale analisi di valutazione aiuterà 

lo sviluppo di efficaci politiche di mitigazione degli effetti dovuti alla siccità. 

 

In questo studio, é stata analizzata la distribuzione spaziale e temporale della siccità 

in tre diversi stati - Algazeera, North Kurdufan e Algadaref- delle regioni agricole in 

Sudan, nel periodo compreso tra il 2009 e il 2019. 

 

I dati NDVI generati da MODIS (risoluzioni temporale e spaziale: 8 giorni, 250 m) e 

Landsat 7 (risoluzioni temporale e spaziale: 16 giorni 30-m) sono stati utilizzati per 

creare un modello di regressione lineare che descriva la relazione tra gli NDVI ottenuti 

dai due satelliti. Il modello di regressione lineare è stato quindi applicato a livello di 

pixel per generare dei dati NDVI fusi, partendo da MODIS e Landsat. Le immagini 

NDVI fuse risultanti hanno la risoluzione temporale di MODIS e la risoluzione 

spaziale di Landsat e mostrano un'elevata correlazione con il MODIS NDVI nelle 

regioni agricole (0,99, 0,97 e 0,98 nell'Algazeera, nel Nord del Kurdufan e ad 

Algadaref). 

 

Successivamente è stato calcolato il Vegetation Condition Index (VCI) dalle tre serie 

NDVI, e, sulla base di una soglia sui valori VCI mensili e annuali. 

 

per le regioni di studio sono state generate delle mappe di severità e durata media 

della siccità. Inoltre, sono state costruite immagini aggregate della frequenza della 
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siccità per definire maggiormente quali siano le zone piú vulnerabili, che sono 

interessate dalla siccità. 

per le regioni di studio sono state generate delle mappe di severità e durata media 

della siccità. Inoltre, sono state costruite immagini aggregate della frequenza della 

siccità per definire maggiormente quali siano le zone piú vulnerabili, che sono 

interessate dalla siccità. 

 

La distribuzione spaziale delle mappe della siccità indica che ciascuna delle tre regioni 

sono state colpite dalla siccità. Tuttavia, le percentuali medie dei terreni coltivati colpiti 

dal fenomeno nelle tre regioni, stimate utilizzando il sensore Landsat, erano molto 

simili (circa il 15% delle terre coltivate della regione negli anni in cui l'impatto della 

siccità era significativo e il 10% quando la siccità era lieve). 

 

Mentre le stime MODIS erano molto più alte (17%, 20% e 15% negli anni vulnerabili e 

10%, 12% e 8% negli anni in buone condizioni di vegetazione rispettivamente delle 

regioni di Algazeera, Kurdufan settentrionale e Algadaref). Le analisi mostrano che le 

parti settentrionali del Nord del Kurdufan, le parti orientali di Algazeera e le parti 

settentrionali delle regioni di Algadaref  sono le aree più interessate dalla siccità. 

 

La distribuzione temporale che é stata stimata ha coinciso con i dati nazionali e globali 

che indicano la stagione del 2015 come l'evento di siccità più forte. Nel 2009 la siccità 

è stata osservata sia nelle regioni pluviali che irrigate, mentre quella della stagione 

2011 è stata limitata alle regioni di Algadaref e Aljazeera. Al contrario, le stagioni 2010, 

2012, 2016 e 2018 sono state generalmente gli anni più resistenti alla siccità. Durante 

tutto il corso del periodo di studio, la maggior parte delle aree coltivate nello stato di 

Algadaref sono state colpite dalla siccità. 

 

Inoltre, le mappe VCI medie annuali hanno mostrato come la siccità agricola abbia 

avuto una frequenza annuale nelle tre regioni. 

 

Oltre a ciò, l'esordio della siccità nel periodo analizzato è stata rilevata prima dell'inizio 

della stagione agricola. La media della percentuale stimata della popolazione era 

compresa tra il 3% e il 5% in queste due regioni, pur mostrando stabilità nella regione 

del Kurdufan settentrionale (la percentuale della popolazione colpita era inferiore 

all'1,5%). 
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I risultati hanno anche dimostrato il potenziale del set di dati MODIS Land Dynamics 

per determinare le informazioni fenologiche della coltivazione, l'idoneità dell'indice 

delle condizioni di vegetazione dei tre NDVI telerilevati nell'identificare l'insorgenza, 

la durata e la distribuzione della siccità e la capacità delle mappe VCI basate sul 

Landsat per rilevare condizioni di vegetazione estreme. Inoltre, i dati NDVI fusi di 30 

m, grazie al vantaggio della maggiore risoluzione temporale di MODIS e della 

maggiore risoluzione spaziale di Landsat, possono essere integrati in un sistema di 

allerta precoce di monitoraggio della siccità. 

Parole chiave: monitoraggio della siccità, analisi spaziotemporale, Sudan, Landsat, 

MODIS, sistema di allerta rapida della siccità. 
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1. Introduction 

In this chapter a general contextual overview, thesis objectives, and the thesis structure 

will be presented. 

1.1 General overview 

 

Sudan is blessed with enormous cultivable land, estimated at 74 million hectares, out 

of which only some 21.2 million hectares (about 28% in 2018) are currently under 

cultivation. Agriculture in Sudan is the center of economic activity and people's 

livelihoods. It meets nearly all of the people's sorghum and millet needs, which make 

up the majority of the staple food. Furthermore, Sudan's agriculture sector contributes 

approximately 30% of GDP (2014), provides livelihood to approximately two-thirds of 

the population, employs approximately 60% [1] of the labor force, and supplies raw 

materials required by agro-based industries, as well as generates demand for 

industrial consumer goods. 

 

The ecological system of Sudan's agricultural area can be divided into five vegetation 

zones based on the rainfall gradient. Starting with the desert in the upper north as part 

of the largest African desert, then the semi-desert and low-rainfall savannah, and 

finally the high-rainfall savannah in the south, with the average rainfall increasing 

southward. 

 

The remote sensing images provide continuously updated source for the 

environmental phenomenon and had been extensively used for detecting and monitor 

the drought impact assessment in various ecosystems. In comparison to on-ground 

measurements, which often require much more effort and are performed on a smaller 

scale, current operational remote sensing missions, such as Landsat 7 and MODIS, 

have the advantage of being relatively low-cost, temporally updated, long-term global 
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observations.  The spectral information from the satellite images has been exploited to 

monitor the vegetation conditions and for agricultural applications such as crop yield 

monitoring thanks to the Vegetation Indices (VIs). [2]–[4].  

The most used vegetation index to describe the vegetation properties is the 

Normalized Difference Vegetation Index (NDVI), which is based on the Band Ratio 

Parameter between the Near-Infrared band and the visible red band reflectance. On 

both local and global scales, NDVI has proven to be a successful quantitative measure 

of vegetation condition. As well, the NDVI standardized anomalies were studied to 

detect and monitor the drought impact. [5]–[7] 

 

The Vegetation Condition Index (VCI), derived from the long-term NDVI records, has 

been designed to enhance the NDVI weather-related component in the NDVI time 

series and reduce the NDVI noise due to the ecosystem-related component. The 

bounds of the long-term NDVI records were used as a standard to quantify the extreme 

vegetation conditions in the study region. VCI has been effectively used for regional 

analysis of agricultural drought characteristics (onset, duration, intensity, and 

frequency). 

 

In this study, we investigated the capability of employing the vegetation condition 

index (VCI) derived from the MODIS and Landsat 7 observations to highlight the 

agricultural drought characteristics over three agricultural regions (Algazeera, North 

Kurdufan, and Algadarif) in Sudan during the period between 2009 and 2019. We 

further improved the analysis by combining the NDVI records from MODIS and 

Landsat to achieve a fused NDVI that provides reliable and stable data for an early 

warning system for drought detection and monitoring. Besides, the study assesses the 

affected population and cropland by the drought during the analyzed period. 

1.2 Objectives 

The main three objectives of this research can aim at: 

1. Investigating the potential of the vegetation condition index derived from 

multiple remote sensing sensors in highlighting the agricultural drought 

characteristics over Sudan between 2009 and 2019. 

 

2. Analyzing the agricultural drought impact on the population and croplnad. 
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3. Assessing the relibility of fused remotely sensed data in improving an early 

warning system for drought detection and monitoring. 

 

1.3 Thesis structure 

 

 The general structure of this thesis can be described as:  

 

• The chapter 2 will give a theretical background about remote sensing and the 

two main used sensors, as well as the different used data in this project and the 

study area. 

 

• In chapter 3, the cloud processing platform (Google Earth Engine) and its main 

architecture will be adressed. Moreover, the adopted methodolgy wil be 

introduced. 

 

• In chapter 4,  the achieved results will be discussed.  

 

• Finally, chapter 5 contains the conculusions, limitations of the study, and the 

propposed future improvements.  
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2. Data and study area 

This chapter provides an overview of the principles of remote sensing, the used data 

in the analysis phase of the study as well as the study area. 

Remote Sensing is defined as the process of acquiring information about objects from 

remote positions. This information is retrieved by properly recording and processing 

the electromagnetic energy emitted or reflected by the investigated objects [8]. 

2.1 Theoretical Background 

2.1.1  Electromagnetic spectrum 

 

Remote sensing term is widely used to refer to the usage of satellite-borne sensors for 

sensing the Earth's surface for producing thematic maps. The principle of remote 

sensing is basis on the one of the human eyes vision mechanisms, over and above that, 

the digital sensors are able to register the light intensity in wider range of the incident 

light of electromagnetic wave (e.g., infrared, thermal). Hence, the measurement in 

remote sensing is the electromagnetic waves energy that reflected or emitted by the 

studied surfaces and recorded by the sensors which are able to register the light 

radiation intensity of the incident light in a wide range of the electromagnetic wave. 

 

The electromagnetic spectrum is a unidirectional continuous representation of the 

electromagnetic energy distribution that is ordered by the wavelength (𝜆) or by the 

frequency of the wavelength. 

 

Each portion of the electromagnetic spectrum is called a band and this term is often 

used in remote sensing to describe the sensed reflected light energy within the specific 

portion of the spectrum. 
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Figure 1. Electromagnetic radiation spectrum used in remote sensing [9]. 

 

2.1.2   Spectral signature  

 

Because of the spectral characteristics of the Earth's surface objects, its interaction with 

the different portions of the light's spectrum might be different. Meaning that the 

object would absorb or reflect a divergent amount of the light energy regarding the 

wavelength of the light that it interacted with. This variation in interaction is known 

as the spectral signature. The spectral signature is a commonly used concept for 

identifying and detecting the objects on the Earth's surface. 

 

The spectral signatures of numerous ordinary materials, for instance, the water, green 

vegetation and soil are known and compiled in spectral libraries [10]. 

Figure 2. below gives an illustration of the spectral signature of the main Earth’s 

surface objects with the light spectrum. 

Besides, the spectral signature was the primary principle behind the spectral indices, 

which are widely used in remote sensing studies and applications. 
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Figure 2.   Main Earth’s surface object's spectral signature. 
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2.2  Used data 

 

2.2.1  Landsat 7  

 

One of the Landsat, NASA/USGS program supplies up-to-date most extensive 

calibrated high-quality Earth's satellite-based images with a moderate resolution 

catalog since 1972, that provides Earth's observations aims to build Earth's optical 

images archive  all around the world dedicated for environmental monitoring acquires 

the data by means of the on-board Enhanced Thematic Mapper Plus (ETM+) sensor, 

an upgraded instrument of the earlier versions of sensing instruments used in Landsat 

4 and 5. The mission had been launched in 1999 and it is still dominating the global 

Earth observation catalog in a 16-day interval of revisiting basis. The images are 

comprised by eight bands that results of the satellite's sensor capturing for the image 

footprint in different light portions. The first three bands were captured using the three 

natural colors channels, Blue, Green and Red in order followed by the near and 

shortwave Infrared bands.  

 

The advancement in Landsat 7 compared with the Landsat 4 and 5 from spectral bands 

point of view is the producing of the panchromatic band that had a finer spatial 

resolution (15 meters).  

Since October 2008, USGS made the Landsat data publically accessible for free. Hence, 

this made the Landsat data one of the essential parts of the Group on Earth 

Observations (GEO) that met the characteristics set by the United Nations for 

supporting their Sustainable Development Goals, and therefore, Landsat data is 

considered as one of the most globally used satellite image observations for 

environmental monitoring and tracking. 

 

The used collection in this study is the (USGS Landsat 7 Level 2, Collection 2, Tier 1) 

dataset that had been atmospherically corrected and converted into a surface of 

reflectance preprocessing level available on the Google Earth Engine platform. The 

data had been developed with the Landsat Ecosystem Disturbance Adaptive System 

(LEDAPS) algorithm and delivered along with Quality Assurance (QA) bands 

(additional bands allow the user to assess the quality of each pixel in the image and to 

select the pixels that meet the set conditions) and afterward, it packaged into 
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overlapping scenes with an approximate 170 km x 183 km size of the scene. Table 1. 

shows the spectral bands of Landsat 7.  

 

 Band name 
Wavelength 

micrometers 

Spatial resolution  

in meters 

Band 1 Blue band 0.45 - 0.52 30 

Band 2 Green band 0.52 - 0.60 30 

Band 3 Red band 0.63 - 0.69 30 

Band 4 Near-Infrared band 0.77 - 0.90 30 

Band 5 Short-wave Infrared band 1.55 - 1.75 30 

Band 6 Thermal band 10.40 - 12.50 60 

Band 7 Mid-Infrared band 2.09 - 2.35 30 

Band 8 Panchromatic band 0.52 - 0.90 15 

Table 1.  Spectral bands of Landsat 7 (http://usgs.gov/)  

2.2.2    MODIS/ Terra Surface Reflectance 8-Day dataset (MOD09Q1.v0061) 

 

One of the multiple datasets generated from the Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS) observations gives information of the surface reflectance, 

the dataset was corrected for the atmospheric effects. For every pixel in the dataset 

images, a chosen value from all the observations gained over the pixel throughout the 

8-day period of acquisition is to be assigned to the pixel.  

The standard criteria for the pixel value selection involve the cloud and solar zenith, 

observation coverage, and the absence of the cloud and shadow. 

The dataset has a spatial resolution of 250 m and an approximate scene size of 1200km2 

with global coverage and multi-day temporal resolution. The data is provided in a 

couple of bands of surface reflectance. These data are mainly used in this study in the 

analysis phase to extract the monthly MODIS NDVI as well as the main dominator in 

the 8-day fused NDVI.                                          

http://usgs.gov/
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2.2.3  MODIS Land Cover Dynamics Yearly 500m Global dataset 

(MCD12Q2.006) 

 

 

An annual global land surface dataset that provides valuable information about the 

vegetation phenological metrics and the seasonal dynamics of the vegetation cover, 

which gives primary information for agricultural studies. The product was derived 

from assembling a time series of two bands of Enhanced Vegetation Index (EVI) based 

on the MODIS nadir bidirectional reflectance distribution function (BRDF)-adjusted 

reflectance (NBAR) at 500 m spatial resolution [6]. By fitting a cubic smoothing spline 

to the time series, it allows to identify the valid vegetation cycles within the time series 

and then extract the phonemetrics of each vegetation cycle.  

 

The valid vegetation cycle is identified as the period of sustained increase in NBAR-

EVI2 followed by sustained periods of decrease. Moreover, the peaks in the NBAR-

EVI2 time series are detected as points where the first derivative changes sign. These 

candidate peaks are stored by NBAR-EVI2 magnitude and then analyzed recursively 

to define the associated start and end dates for the Greenup/down segment [11]. 

 

The start of Greenup, MidGreenup and Maturity dates are derived where the NBAR-

EVI2 time series crosses 15%, 50%, and 90% of the Greenup segment in NBAR-EVI2 

amplitude, respectively. Similarly, Senesece1 and Sensence2 metrics represent the 

bounds of the growing season as well as the Start Of Season and End Of Season 

information that determines the beginning and ending period of cultivation.  

This dataset is utilized in the cultivation season bounds and their peaks to highlight 

the interesting time periods over the overall study years. 
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2.2.4 WorldPop population dataset 

 

A spatial database about the global population in different spatial resolutions (100m, 

and 1km) is provided by the WorldPop initiative, established in 2013 by combining 

different regional population mapping projects that aimed to provide informative 

estimates of the population and their distribution in a gridded base as this data would 

be a valuable resource of information for research and decision-making.  

 

One advantage of the WorldPop data is that it provides annual estimations of the 

population. This enables the users to get an updated picture of the population 

situation. As a result, the data was used by various scientific research to estimate 

population growth and model the citizens' movement as well as international 

organizations in humanitarian response to crises. Moreover, the datasets were used in 

the spatial analysis along with other geospatial data, for instance, to study the 

distribution of public utilities such as schools and healthcare centers with respect to 

the local population density. Furthermore, the data was widely used to investigate the 

impact of the natural disaster and damage analysis.  

 

The WorldPop initiative's population datasets were estimated using recent census-

based population data measured on an administrative unit basis, and then it 

disaggregated these counts into smaller grid cells. 

Furthermore, a Random Forest-based machine learning algorithm was used to map 

the population counts to exploit the spatial pattern similarity and relationships 

between the population and various geospatial covariate layers.  

 

Hence, the WorldPop dataset with a spatial resolution of 100 m, which is available on 

Google Earth Engine, was used to estimate the annual number of people affected by 

agricultural drought in the study area from 2009 to 2019. This rough estimate would 

provide indicators about the needed actions to mitigate the agricultural drought's 

impact, as well as allow bridging the gap to achieve the United Nations Sustainable 

Development Goals (SDGs) 1 and 2, No Poverty, and Zero Hunger in the analyzed 

regions. 
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2.2.5 FAO Agricultural Stress Index System (ASIS) 

 

A worldwide monitoring system was developed by FAO to monitor the cultivated 

areas suffering from severe drought in intense instances using satellite data and then 

aggregate the results into administrative units. The system provides worldwide 

information about the vegetation's condition and health in terms of indicators. The 

system information is composed of two types of indicators: 

 

Seasonal indicators such as the drought detection indices and non-seasonal indicators 

such as vegetation anomaly indicators. Hence, both types of indicators have been used 

to validate the agricultural areas and to refine the agricultural mask spatial extent. 

 

2.2.6 Global Food Security-support Analysis Data 

 

A global high-resolution dataset produced by NASA’s project aims to provide 

cropland areas' extent and intensity that contributes toward the global food security 

and effective cropland mapping.  

 

The GFSAD product is generated by the synthesis of four global cropland products 

presented by different studies [12] and indicates the cropland since a nominal start 

year of 2010. The four primary datasets were mainly derived from various remote 

sensing sensors (e.g., Landsat, MODIS, Geoeye, Quickbird, and RapidEye) as well as 

ancillary data that included the ASTER-derived Digital Elevation Model (GDEM), 

historical records of precipitation, and temperature, and digital maps of soil types and 

administrative units. 

 

The dataset is delivered in a single band called "landcover" that is classified into five 

classes in order to differentiate between the non-croplands and the cropland regions. 

In addition, it categorizes the irrigated and rainfed croplands with a nominal spatial 

accuracy of 1 km.   

Table 2.  below summarizes the remote sensing datasets used in the analysis phase in 

this study, besides the time coverage of each data, and its spatial and temporal 

resolution. 
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Data Time period 
Spatial 

resolution 

Temporal 

resolution 

Landsat 7 surface reflectance 2009 - 2019 30-m 16-day 

MODIS/ Terra surface reflectance 2009 - 2019 250-m 8-day 

MODIS Land Cover Dynamics 2009 - 2019 500-m annually 

GFSAD 2007 - 2012 1-km Multi-year 

FAO ASIS dataset 2010 -2019 1-km annually 

WorldPop annual dataset 2009 -2019 100-m annually 

Table 2: Summary of used remote sensing-based datasets in the study. 
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2.3 Study area 

 

To evaluate the impact of the agricultural drought in Sudan, three regions (Algazeera, 

North Kordufan and Algadaref) states, shown in Figure 3. below, have been chosen to 

investigate the effect during the study period on the three different ecosystems and 

water-feeding ways.  

 

The first region, Al Gezira, is located between the White Nile and the Blue Nile in the 

east-central of the country and had a mean elevation of 408 m above the mean sea level 

and contains the world’s largest irrigated scheme locates in the center of the country 

and it depends mainly on the water supply from the Nile River and has two seasons 

per year. The crops growing in the scheme are cotton, Sorghum, Wheat and 

Groundnut. The population of the state is about 3.34 million and the average annual 

rainfall is approximately 283 mm/year [1]. 

 

North Kurdufan, the second region in the study area, is located in the West-central 

region of Sudan between (27 and 32.42 E and 12.21 to 16.51 N) with an average 

elevation of 490m above the mean sea level and populated by about 1.456 million in 

2019 where 79% of the population depends on the agriculture for their livelihood and 

an annual average of rainfall of respectively low (330 mm/year). 

 The percentage of the agricultural areas in the region slightly exceeded the quarter of 

the total area of the state that is (188872 Km2). The water-feeding method in this region 

is mainly rain-fed agriculture; therefore, the cultivation has one season annually 

during the rainfall months. The cultivated crops in the region are sesame, sorghum, 

and millet.   

 

The third region, Algadaref state, is located in the southeastern part of the country, 

sharing the international boundaries with Ethiopia and represents one of the biggest 

agricultural regions in the country. This state is located between (33.58 to 36.56 E and 

12.51 to 15.86 N) with a mean elevation of 608m above the mean sea level. The 

population of the state is about 1.47 Million (2019) and the annual average rainfall 

estimation is approximately 613 mm/year [1]. Over 74% of the state area (64291 Km2) 

is cropland and most of these areas are desert and semi-desert ecological zone while 

the north part of the state is poor and dense Savanna areas.  
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The well-known agricultural practices are the traditional and the mechanized ones in 

the huge, endless individual fields. The most cultivated crops are sesame seeds, 

sunflower, cotton, and sorghum. The state is the major producer of grains in Sudan, 

contributing about half of the country's sorghum and millet production. Thus, the state 

represents the country's granary and it is known as a huge market for crops. 

 

Figure 3. The study area map 

The choice of the study regions aims to reflect the impact induced by the agricultural 

drought in different ecological zones, water-feeding ways and the regional climate so 

that future mitigation policies can benefit from the study by considering multiple 

scenarios for agricultural drought detection and monitoring in the country.  

 

The study concentrates on monitoring the agricultural drought-induced over the 

agricultural areas. Therefore, the croplands over the three study regions have been 

extracted to define the intended area of interest for the study using different datasets. 

The main extent of the agricultural mask was provided by the land use office, Ministry 

of Agriculture in Sudan, in addition to the spatial data provided by the Higher Council 

for Environment and Natural Resources, Ministry of Environment, Natural Resources 
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and Physical Development, showing the areas where the governmental agricultural 

schemes are cultivated, and investors registered in the official governmental records. 

Furthermore, the individuals’ fields that represent a considerable portion of the 

croplands had been extracted thanks to the information provided by MIERAG Space 

Technologies Company, a Sudanese remote sensing company established under the 

supervision of the Ministry of Science and Technologies, Sudan which is concerned 

about the national agricultural monitoring using remote sensing data. The spatial 

information shows the spatial distribution of the cultivated areas since 2009. Then, the 

provided data has been filtered and validated by the FAO Agricultural Stress Index 

System (ASIS) data and Global Food Security-support Analysis Data (GFSAD1000) 

products on the Google Earth Engine. Figure 4. shows the extent of the extracted 

cropland mask over the study area.  

 

Figure 4. The cropland mask extent map. 
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3. Processing technology and 

methodology 

In this chapter, the cloud-based processing technology, its architecture, main 

functionalities, and the ways the user can interact with it will be introduced. As well, 

the adopted methodology and the analysis steps, including an overview of a proposed 

fused dataset for an early warning system for drought detection and monitoring, the 

building of the needed spectral indices objectives, for achieving the study, will be 

shown. 

 

3.1 Google Earth Engine 

 

The Google Earth Engine is a cloud-based platform with extensive planetary-scale 

satellite images, Earth observations, and other geospatial data catalogs in an analysis 

format without the prior need to download [13]. 

 

The advantages of using the Google Earth Engine come from many perspectives. First 

and foremost, the benefits from the publically accessible Earth observations that 

extend for more than three decades from multiple space agencies and institutes that 

reach about forty petabytes (i.e., millions of Gigabytes), including Landsat and Sentinel 

constellation images in different preprocessing levels, multiple MODIS observations 

and derived products, landcover datasets, and different metrological repositories, just 

to mention a few, that are continuously updated.  

 

Secondly, the huge server-side leverages Google's server image processing capabilities 

such as image filtering based on time intervals, cloud coverage, spatial extent, a 

specific band(s), and other image properties thanks to the platform analysis 

functionalities. Further, aggregating the analysis results over spatial spaces or over 

time, which are provided by the platform as well as the interactive web-based code 

editor, reduces the analysis time and increases the performance, in addition to the 
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chance of sharing, and reusing the already existing analysis algorithms and adapting 

them for intended purposes [14]. 

 

 

Figure 5. Google Earth Engine overview (https://earthengine.google.com/) 

 

Academically, the Google Earth Engine platform has proved its success in many 

published academic studies and applications in temporal analysis and environmental 

tracking on both local and global scales [15], [16]. Google Earth Engine has already 

introduced simple but powerful APIs (Application Programming Interfaces) available 

for either Python or JavaScript users through an interactive web-based code editor. 

 

As an online-based platform for global-scale geospatial analysis with huge 

computational capabilities, GEE can be valuable for analyzing a variety of high-impact 

societal phenomena such as monitoring forest changes, droughts, hydrogeological 

disasters, water management, and determining related environmental protection 

measures [17] since the limited efficiency of the local-machine software makes such 

analyses impractical, especially for large areas. Thus, the GEE, for its mentioned 

capabilities, has been chosen as an analysis technology platform for this study. 

 

  

https://earthengine.google.com/
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3.1.1 Google Earth Engine system architecture 

 

The simplified architecture of the system is shown in Figure 6. below. GEE is designed 

and implemented on top of Google's enabling technologies, along with a web-based 

database that supports tables of geometric data (points, lines, and polygons). 

The first layer is represented by the online code editor, a web-based IDE (Integrated 

Development Environment), used for writing and deploying simple scripts, and it uses 

the client libraries to send interactive or batch queries to the system through the REST 

(Representational State Transfer) API. In the On-The-Fly computation section, the 

requests by the users are held and distributed to a pool of computation servers. Finally, 

the data stores contain the images' metadata and enable well-organized selection 

constraints that can perform the filtering efficiently [18]. 

 

 

 

Figure 6. Simplified GEE system architecture [18]. 
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The Google Earth Engine platform provides three different ways that users may 

interact with the platform. These are: the cloud-editor, the Earth Engine Explorer, and 

the client libraries. 

● The Code editor is a web-based interactive Integrated Development 

Environment (IDE) that was designed to support JavaScript scripting for 

retrieving, filtering, and processing data (the already provided data by the 

platform or the one uploaded by the users). Furthermore, it allows fast data 

elaboration and simple and effective code-implementation for handling 

complex geospatial analysis. 

● The Earth Engine Explorer: an interface that allows users to interact with the 

platform's archive of datasets, which includes satellite observations as well as 

globally convenient derived datasets such as global spectral indices and vector 

data. The Earth Engine Explorer's data is organized and tagged using keywords 

that connect similar datasets. Figure 7. illustrates the Earth Engine Explorer and 

a list of analysis operations through it. 

 

 

Figure 7.  Earth Engine Explorer and a list of available analysis operations 
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The Earth Engine Explorer is divided into two main sections that the user can browse 

between; the data catalog, the first, where different datasets are stored; And the 

workspace, where the analysis is done. The analysis in the workspace is available in a 

code-free mode, where many simple analysis operations (such as filtering image 

composites based on a-preferred threshold, and computing slope) are already 

prepared and, thus, the users can use them without the need to write them.   

● Client libraries: a collection of ready-to-use functions, libraries, and wrappers 

that users can use and/or modify to tailor their proposals and desired analysis. 

The libraries are available as python or JavaScript-based.  
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3.2 Methodology 

The adopted analysis methodology is described in Figure 8 below. As previously 

stated, the preprocessing and subsequent analysis steps were carried out in Google 

Earth Engine. 

 

 

 

Figure 8. Adopted methodology workflow. 
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3.2.1 Data preprocessing 

 

Satellite remote sensing Multi-spectral images are mainly collected by sensors from 

space. This may affect the images due to different kinds of effects it can experience 

during the image capture due to atmospherical or topographical effects [19]. The 

process that aims to minimize these effects is called image preprocessing. 

For properly multi-spectral remote sensing image analysis results, the image 

preprocessing step is crucial and may affect the quality of the final results. Thus, in this 

study, the used datasets were chosen, as described earlier, as atmospherically and 

topographically preprocessed images.  

Upon the image preparation for the analysis phase, only the images with a cloud cover 

that is less than or equal to 15% of the whole image coverage are considered. This 

ensures that the validity of the obtained data is not affected by the cloud presence. The 

images were clipped over the study regions and filtered over the study period. 

 

3.2.2 Agricultural seasons duration determination  

 

Because the study is about agricultural droughts that affect croplands, and because 

agricultural drought characteristics vary between agricultural seasons [20]. 

The analysis in each year throughout the study period should be reduced to the 

cultivation season. Hence, the first step in the analysis was to determine the season 

timing. This information was also used to inspect how the drought intensity and extent 

may behave in different ways according to the crop's growing phases. 

As emphasized in the data description chapter, MODIS Land Cover Dynamics Yearly 

Global 500m (MCD12Q2.006) observations were employed to extract the phenological 

information. The extracted phenological information was: 

Number Of Cycles which indicates how many valid vegetation cycles have a peak in a 

product year, Start Of Season, End Of Season, and Peak Of Season for each region of 

the three study regions. 

 

 

From this information, which is mainly in terms of dates, the average Start Of Season, 

average End Of Season, Peak Of Season, and the duration of the season over each 
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region were computed. Finally, each of the dates was converted into a Day Of Year 

(DOY). 

 

 

 

Figure 9. Phenological metrics and their relationship with vegetation index [21]. 

 

3.2.3 NDVI (Normalized Difference Vegetation Index) 

 

Vegetation indices are image-based indicators resulting from different band 

combinations of the same image that show the vegetation properties [22] and thus is 

widely used for vegetation presence indicators. The vegetation indices are originally 

derived from the vegetation spectral signature and the vegetation cover interaction 

with the electromagnetic waves, and thus, they have been used globally to map the 

vegetation properties [5]. 

 

The most well-known vegetation index is the Normalized Difference Vegetation Index 

(NDVI), which was developed by Rous et al. [23]. as an effective quantitative measure 

derived from sensor records, and it can be described by the equation (1)  below: 
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 𝑁𝐷𝑉𝐼 =   
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

(1) 

 

Where NIR and R are the spectral reflectance measurements acquired in the Near-

Infrared, and the red bands, respectively. 

The NDVI formal above shows the difference between the spectral reflectance of the 

Near-infrared and the red bands using the band ration parameter (BRP) while the 

normalization in the NDVI formula was introduced to eliminate the seasonal sun angle 

difference and to minimize the effect of atmospheric attenuation [23]. 

 

The NDVI values range between -1 to 1, where the negative values indicate the absence 

of vegetation cover and the presence of water bodies, while the positive ones represent 

the presence of vegetation. In sum, the higher the NDVI value, the healthier the 

vegetation.  

 

The main aim of NDVI is to characterize the vegetation and its health regionally and 

globally ([6]). Consequently, remote sensing derived NDVI from different missions has 

rapidly increased in academic research and different related applications since it 

provides a reliable and continuously updated source of information about vegetation. 

Besides, NDVI anomalies have been extensively studied to extract information about 

both the environmental and climatic parameters of vegetation regions [5] and drought 

detection and monitoring [6], [7]. 
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3.2.4 Data Fusion 

 

The design of any early warning system for drought based on Earth observations 

mainly relies on the presence of the essential data that is needed for extracting the 

information about the drought or the indicators of drought.  

 

The main input data for drought detection and monitoring is the satellite-based 

spectral vegetation indices, hence, the Normalized Difference Vegetation Index 

(NDVI). Hence, the existence of the two main satellite image providers with adequate 

spatial and temporal resolution within the region. However, as it was indicated earlier 

in the description of the used satellite-based imagery datasets in this study, namely; 

Landsat 7 images provide a 30m resolution that is well-suited for capturing surface 

spectral reflectance [24], [25] However, Landsat has limited temporal coverage due to 

its nominally longer revisiting cycle (i.e., 16 days). Furthermore, the regular 

availability of these data is still questioned in light of cloud contamination and Landsat 

sensor deterioration as a result of Sensor Scan Line (SCL) failure since 2003 [25], [26]. 

 

On the other hand, the used MODIS dataset produces the needed spectral information 

for generating NDVI with a higher temporal resolution (8-days) composite, which is 

more suitable for drought analysis from a temporal resolution point of view but with 

a substandard spatial resolution (250m) that is less suitable for heterogenous cultivated 

landsacpes [2]. 

 

The goal of the multiple satellite sensor data fusion step is to provide superior 

information and solve problems concerning individual sensors and benefit from their 

independent advantages. Hereby, in this study, the aim of the data fusion is to produce 

a synthetic data that has the spatial resolution of the Landsat's as the time-resampling 

of the MODIS's (i.e., 8 days) in such a way that the result data will have a higher time-

frequency as well as a convenient spatial resolution of 30m of Landsat, which is 

appropriate for the drought mapping details and detecting early warning systems [20], 

[25]. 

 

The input data for the fusion step are the generated Landsat and MODIS NDVI bands 

resulted from the previous step. Further, the input bands were projected into the same 

geographic projection (i.e., WGS84). 



28 Processing technology and 

methodology 

 

  

 

Based on the assumption made by M. He et al. [2] that the NDVI retrievals from the 

two different sensor records are consistent and comparable, a pixel-wise linear 

regression model based on the relation between the two NDVI observations was 

applied through GEE to mix both Landsat and MODIS NDVI records. 

The fused NDVI was derived using the result slope and the intercept from the built 

linear regression model and the MODIS NDVI data as the equation (2) below: 

 

𝑓𝑢𝑠𝑒𝑑𝑁𝐷𝑉𝐼 =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑚𝑜𝑑𝑖𝑠𝑁𝐷𝑉𝐼  ×   𝑠𝑙𝑜𝑝𝑒 (2) 

 

Where:𝑓𝑢𝑠𝑒𝑑𝑁𝐷𝑉𝐼  is the NDVI record resulted from the fusion 

𝑚𝑜𝑑𝑖𝑠𝑁𝐷𝑉𝐼  is the NDVI record extracted from the MODIS surface reflectance 

observations.  

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝑠𝑙𝑜𝑝𝑒  are the intercept and the slope of the linear regression model, 

respectively. 

 

For evaluating the obtained fused NDVI data, the correlation between samples of the 

fused data and the two original sensors' NDVI records over the three study regions at 

various time periods was estimated. However, the correlation between the fused and 

MODIS samples was performed at the same time epochs since both data have the same 

temporal resolution and, therefore, the same sampling dates. The correlation between 

the fused and the corresponding Landsat NDVI samples was performed based on the 

criteria of choosing the fused-Landsat couples who have the least time gaps because 

the two records, not the necessity, were sampled on the same dates. 
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3.2.5 Vegetation Condition Index (VCI) 

 

The Vegetation Condition Index was introduced by F.N. Kogan [27]. The main idea is 

based on the long-term NDVI records. Kogan claims that the NDVI quantifies the 

spatial difference between the weather component (year-to-year variations in each 

ecosystem due to weather fluctuations) and the ecosystem component (the 

productivity of an ecosystem). The weather-related NDVI-component is smaller than 

the one related to the ecosystem, VCI was mainly designed to reduce the NDVI noise 

and to enhance the weather-related component in the NDVI time series. Therefore, the 

normalization can successfully minimize the ecosystem component [28]. Thus, the 

weather-related NDVI portion can be linearly scaled from zero, minimum NDVI, up 

to 100, maximum NDVI, for a particular epoch and space unit (e.g., region or grid cell). 

Consequently, the resulting indicator called the Vegetation Condition Index is defined 

by the equation (3) illustrated below:  

 

𝑉𝐶𝐼𝑖 = 100   × (
𝑁𝐷𝑉𝐼𝑖 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛
) (3) 

 

Where:  

𝑉𝐶𝐼𝑖 is the Vegetation Condition Index value of the current epoch 

𝑁𝐷𝑉𝐼𝑖 represents the NDVI value of the current epoch.  

𝑁𝐷𝑉𝐼𝑚𝑖𝑛 is the minimum long-term NDVI value over the vegetation region.  

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 is the maximum long-term NDVI value over the vegetation region.  

 

The absolute bounds (maximum and minimum) of long-term NDVI records computed 

over many years describes the extreme conditions and events and therefore, it can be 

used as a standard to quantify these extreme conditions [5]. 

As a result, VCI shows the approximate weather-related component in NDVI, 

changing from zero, the extremely unfavorable vegetation condition, up to the 

maximum, 100, showing the optimal vegetation condition compared with historical 

records of NDVI.    
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However, Kogan [27] estimated a numerical threshold to define drought events that is 

less than 40 percent, and a set of VCI values categorizes the drought severity levels [7], 

[29], as is shown in Table 3. below. 

VCI has been effectively used for regional analysis of drought [7], [27], [30]. Hence, the 

drought detection and monitoring in this study was mainly performed using VCI by 

means of multiple multi-spectral remote sensing data; MODIS, Landsat, and the fused-

NDVI records. 

The maximum and minimum NDVI values needed for VCI computation for each 

sensor’s data were extracted from the sensor's historical NDVI data over the study 

period from 2009 up to 2019. This step was done separately for each of the study 

regions since the regions have different environmental conditions.  

 

Drought severity level VCI Values 

No drought > 40 

Light drought 30 - 40 

Moderate drought 20 - 30 

Severe drought 10 - 20  

Extreme drought <10 

Table 3. shows the Vegetation Condition Index VCI threshold values for drought 

severity classification. 

Hence, the VCI has been calculated over each region using both MODIS and Landsat7 

NDVI values on a monthly basis for the duration of the agricultural seasons of the 

study years to inspect the drought intensity, duration, and spatial extension. Further, 

the annual average of VCI was calculated to reflect the regions that were hit by drought 

and the areas that experienced longer events of drought each year. 

The fused-NDVI data was employed to investigate the possibility of early drought 

detection and to show the drought indicators that may not be achieved through the 

other two sensors. The purpose of using the fused-NDVI data was also to examine the 

most affected growing period during the growing season.  



Processing technology and methodology 31 

 

 

Because it was far more time-consuming for VCI computation compared with the other 

two datasets, which may not be an efficient way for the purpose of the early warning 

system shown in this study, the early drought detection using fused-NDVI was limited 

to the agricultural season of 2015, the most affected year by the drought throughout 

the study period. 

3.2.6 VCI aggregation over time and space 

 

To understand the temporal evolution of the agricultural drought over time, the results 

of the computed annual VCI for each of the two satellites, Landsat and MODIS, were 

aggregated over the study period to estimate the drought occurrence frequency. 

This step was performed by producing a binary image considered as a counter for the 

drought occurrence frequency between 2009 and 2019, over the study region. The 

binary image cell size was set to be equal to the spatial resolution of the corresponding 

satellite image. The binary image pixel value was initialized to zero. A drought 

condition, regardless of its severity level, is identified when the annual VCI lies below 

the mentioned thresholds in Table 3. Hence, the pixels values of the resulting image 

(called the drought counter-image) range from zero, where the pixel's footprint 

experiences no drought event, up to 11, meaning the pixel’s footprint was hit by 

drought annually during the 11 study years. 

The drought counter-image can be beneficial for various related sectors (e.g., 

agricultural, economics, and social planning sectors) and to define the most vulnerable 

locations for the agricultural drought and can be further analyzed by considering 

additional agricultural practice information and soil types to access their impact and if 

these parameters are influential in inducing agricultural drought as well as any 

possible future adaptation/mitigation policies. 

 

Similarly, the affected areas and their percentage of each of the three regions by the 

agricultural drought for each of the three study regions were calculated from the 

computed annual VCI from Landsat and MODIS. This step aims to understand the 

trend of the agricultural drought impact. 

 

Because most people in agricultural regions rely on agriculture as a source of income 

[1], any negative impact on agriculture, such as an agricultural drought, will have a 
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negative impact on the population in these areas. As a result, proper estimation of the 

number of people affected by the annual drought as well as their distribution, like any 

other natural disaster, plays a key role in reducing the consequences of the disaster 

and might even help in enacting effective social policies in the future. 

 

The WorldPop remote sensing data was used to estimate the annual population and 

its distribution in each of the three interest areas, as well as their percentages of the 

overall population. For this task, the annual affected cropland areas according to the 

two sensors, Landsat and MODIS, were used to clip the cropland, then the counts of 

the population in the clipped regions were estimated. This rough estimate is important 

in the drought effect analysis because it provides insight into the annual percentage of 

people affected by agricultural drought. 
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4. Results and discussion  

This chapter concerns the discussion of the achieved results from the analysis 

methodology discussed in the previous chapter. Hence, the structure of the chapter 

starts with the determination of the average agricultural season in the three study 

regions, considering the duration of the study period. Next, the maps showing the 

Vegetation Condition Index using the main two sensors, Landsat 7 and MODIS, are 

aggregated on an annual basis for all the years from 2009 to 2019, while the monthly 

basis is shown only for the most affected years by the drought, namely 2009, 2011, and 

2015. Then, the annual percentage of the affected areas and the affected population in 

each region were illustrated. 

 

The fused derived VCI maps were then shown afterward for 8-day data samples for 

the agricultural season of 2015, the most vulnerable season.  
 

 

4.1 Extracting the phenological information and season 

determination 

 

The phenological information (i.e., the start of season, peak of season, and end of 

season) was extracted for each vegetation region was extracted from the MODIS land 

dynamics dataset. This information was given in the form of UNIX dates (the number 

of seconds elapsed since the 1st of January 1970) and then converted into readable date 

format. Hereby, the results show the scaled EVI values provided by the same dataset, 

representing a periodical cycle for each year. Figure 10 shows that the peaks in the 

seasons approximately coincide with the date of the cycle peaks. Similarly, the start 

and the end of the seasons are located in the growing and the shrinking phases of the 

cycle, respectively. One of the considerable notices was that the scaled EVI values were 

ranged between 0.1 and 0.3, which gives information about the relatively low 

ecosystem properties. The lowest peaks were found to be in 2015 and 2011, while the 

highest was found to be in 2012. 
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The extracted phenological information was averaged over each separate region. The 

average start of season (SOS) and the average end of season (EOS) for each region were 

estimated. As Figure 11  shows, the cultivation season starts in the Algazeerah region 

on average on the 2nd of July and ends on the 21st of October with an average season 

duration of 111 days. The season in North Kurdufan followed the season in the first 

region, where it starts in the middle of July, lasts until the 27th of October, and lasts 

for 104 days. 

The agricultural season in the Algadaref region, on the other hand, was estimated to 

start on the second of August and end on the 16th of November and has a 106-day 

average. 

 

 

Figure 10. Phenological information extracted in the study area. 

 

The extracted data was then used as a reference for filtering the remote sensing data to 

exclude the effects of off-season days. A buffer of 16 days was added at the beginning 

and end of these limits. This is done under the consideration that the sensor images 

may not be captured exactly on the same day. As a result, the Landsat and MODIS 

data in this study were filtered over the buffered season period. 
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Figure 11. Average agricultural season start and end dates over the study regions. 
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4.2 Annual mean VCI estimation 

 

The Vegetation Condition Index results over the study regions were estimated using 

observations acquired through both Landsat 7 and MODIS sensors. Hence, the mean annual 

maps show the drought intensity and its spatial distribution. The suggested VCI thresholds 

were used as a drought severity categorization criterion. 

 

According to MODIS annual derived VCIs, the most affected years were 2009, 2011, 

and 2015. However, the most intense drought occurred in 2015. In these years, as 

Figure 12, Figure 13, and Figure 14 show, the drought indicators are spatially 

distributed around the central parts and the northern part of the study regions. In the 

season of 2015, most of the west region, North Kurdufan, was hit by drought, in 

addition to the central portion of the rest of the regions, which were affected as well.  

 

Similarly, the Landsat resulting maps, as calculated from VCI, show a very similar 

pattern to the MODIS one in terms of the affected years and distribution of the drought 

extent. However, due to its finer spectral and spatial resolution, Landsat VCI maps 

show much more detailed severity conditions and induced drought distribution. As 

an example, the 2010 season was estimated by Landsat to have much higher vegetation 

conditions than the one estimated by the MODIS sensor. This was reflected in the 

percentage of affected cropland this year. Moreover, during the 2013 and 2017 

cultivation seasons, a significant moderate drought that hit most of the Algadaref 

region was clearly identified by Landsat but was not successfully identified by MODIS 

derived VCI.  

  

From the VCI maps of the two sensors, it can be recognized that the agricultural 

drought occurs in all three regions every season, regardless of severity level. According 

to the Landsat derived maps, in the Algazeerah region, most of the years the induced 

impact of the agricultural drought on the cropland ranged between 10% and 16% of 

the agricultural mask and had an average of 10% affected cropland in the drought in 

the rest of the years. In the North Kurdufan region, a very similar temporal pattern 

was experienced wherein in the years when the negative impact of drought was 

significant (2013, 2015, and 2017), the percentage of the affected cropland had slightly 

exceeded 15% of the total cropland. while it dropped to below 10% of the cropland in 

the other seasons.  
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Regarding the Algadaref region, similar to North Kurdufan, the percentage of the 

affected cropland in 2013, 2015, and 2017 in addition to 2014 was significant and the 

percentages reached higher than 15% of the cropland in the region. In the other years, 

the annual drought had less of an impact. However, the least affected cropland was in 

2010, where just below 10% of the cropland was affected. 

 

MODIS detected drought frequency follows a similar temporal pattern to Landsat, 

with all study years experiencing drought of varying severity and spatial distribution. 

However, regarding the affected cropland areas, they are generally far higher than the 

estimated affected cropland by Landsat.  

 

During the analyzed period, MODIS data indicates different behaviors of drought 

while different regions are concerned. In the Algazeerah region, the cropland 

experienced agricultural drought annually. The percentage of the affected cropland 

ranges from 10% to 17%. In the years that were significantly hit by the drought (2009, 

2017), the percentages reached their peak. The longest moderate drought was 

identified as the four years from 2009 to 2013. In the North Kurdufan region, the least 

affected year was 2012, when just 14% of the cropland was hit by the drought. On the 

contrary, in the rest of the years, the cropland areas were affected by approximately 

20% to 25%. 

 

The Algadref region, in contrast, was characterized differently according to MODIS. 

Hence, the years of good vegetation condition were (2012, 2014, 2016, and 2014) where 

the percentage of the affected cropland was (11%, 12%, 10%, and 8%) respectively. 
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Figure 12. Annual mean VCI using Landsat 7 and MODIS over the study regions 

during 2009 and 2010 

 

Figure 13.  Annual mean VCI using Landsat 7 and MODIS over the study 

regions during 2011 and 2012 
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Figure 15. Annual mean VCI using Landsat 7 and MODIS over the study regions 

during 2015 and 2016 

 

Figure 14.   Annual mean VCI using Landsat 7 and MODIS over the study 

regions during 2013 and 2014 



Results and discussion 41 

 

 

 

Figure 16. Annual mean VCI using Landsat 7 and MODIS over the study regions 

during 2017 and 2018 

 

 

Figure 17. Annual mean VCI using Landsat 7 and MODIS over the study regions 

during 2019  
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Figure 18. The estimated percentages of the affected cropland in Algazeera region 

using Landsat 7 and MODIS 

 

 

Figure 19. The estimated percentages of the affected cropland in North Kurdufan 

region using Landsat 7 and MODIS 
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Figure 20. The estimated percentages of the affected cropland in Algadaref region 

using Landsat 7 and MODIS 
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4.3 Monthly VCI estimation  

 

As the three most vulnerable years to the agricultural drought were estimated to be 

2009, 2011 and 2015, and as was shown by [20], the timing of a drought’s start and 

duration, besides frequency, duration, and intensity, are crucial factors to consider 

when assessing the impact of drought. Therefore, here we considered the monthly-

based VCI maps in these three years when the drought hazard conditions were 

significantly observed to measure the drought onset and its duration over each season. 

 

Figure 21 and Figure 22 show the monthly vegetation conditions during the 

agricultural season of 2009 over the study areas using MODIS and Landsat, 

respectively. According to the MODIS maps, the agricultural season begins with a 

severe drought on most cropland in June, and then the drought severity is diluted over 

time to be a moderate drought in July at the majority of the Algazeerah and Algadaref 

regions, as well as the central part of the North Kurdufan region. Most cropland 

experiences light or no drought conditions in August, and crop conditions reach a 

seasonal optimal situation in September. 

 

Likewise, Landsat derived maps described the identical cyclic behaviour of the 

vegetation condition and its spatial distribution, where the highest spots of the 

agricultural drought identified by Landsat were very similar to the ones identified by 

MODIS. A similar outcome was expected considering the VCI’s nature and moreover, 

it confirms the capability of the VCI to characterize the drought conditions. However, 

the Landsat could detect the vegetation conditions' extremes. We can clearly observe 

such behaviour in Landsat’s June map that shows the overall drought level as an 

extreme drought and the healthier vegetation condition in September’s map compared 

with the corresponding results of MODIS at the same time, where the June’s map 

shows overall severe drought and less vegetation condition in September’s one. 

 

We can generalize the above comments to include the 2011 results (Figure 23, and 

Figure 24) as the two years were similar and characterized the drought onset to be in 



Results and discussion 45 

 

 

June and continue up to August, then the vegetation condition reaches its maximum 

in September before it gradually decays in October and November. 

 

On the other hand, the monthly-based VCI maps of 2015 derived from the two sensors 

as shown in Figure 25 and Figure 26 show that the severe to extreme drought spatial 

distribution was detected in June and continued to July. However, this season, the vast 

majority of cropland still experienced moderate and higher drought classes in August. 

Furthermore, the peak of the vegetation conditions continued during September and 

October compared with the peak in the other two highest drought years (2009 and 

2011) where the peak of the season was in September; this might be interpreted as the 

peak of the season affected by the drought onset and duration, and as a result, the more 

intense the drought, as it is reflected in the considerable reduction in the 2015 season 

crop productivity compared with other seasons as reported by FAO [31]. 
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Figure 21. MODIS-based monthly mean VCI during 2009 agricultural season  

 

Figure 22. Landsat 7-based monthly mean VCI during 2009 agricultural season 
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Figure 23. MODIS-based monthly mean VCI during 2011 agricultural season 

 

Figure 24. Landsat 7-based monthly mean VCI during 2011 agricultural season 
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Figure 25. MODIS-based monthly mean VCI during 2015 agricultural season 

 

Figure 26. Landsat 7-based monthly mean VCI during 2015 agricultural season 
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4.5 Drought-counter images 

 

Figure 27 below shows the MODIS and Landsat 7 drought-counter images; images 

show the aggregated annual drought frequency over time. The images were aimed to 

identify the most vulnerable areas to the agricultural drought so, they can be used for 

further analysis in related research and applications. By analyzing the drought spots 

in the drought-counter images, we can recognize the agreement between the two 

drought-counter images in identifying the most vulnerable areas to drought as: 

Sheikan administrative unit in North Kurdufan region, East Algazeera locality in 

Algazeera region, and Albutana locality in Algadaref region.  

 

The above-mentioned areas were expected to be highlighted as frequently affected 

regions by drought as they were reported as vulnerable areas to drought by the 

national plan to mitigate the agricultural hazards [1]. 

 

However, the MODIS drought-counter image defined the central parts of North 

Kurdufan region as vulnerable areas to drought risk while the Landsat classified these 

areas as non-risky areas to the drought.  
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Figure 27. The drought counter images based on Landsat 7 (above) and MODIS 

(bottom).  
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4.6 Fused images VCIs results 

 

The Fused images derived VCI maps are mainly implemented to benefit from the 

advantages of the two sensors (i.e., higher image capturing frequency of MODIS and 

the finer spatial resolution that the Landsat provides). Using such blended satellite 

records, the results are expected to show the drought onset with a narrower time range 

and a detailed drought spatial distribution. Thus, it can be integrated with an early 

warning system for detecting and monitoring drought. 

 

For evaluating the fused-NDVI records, the correlation between the resulted fused-

NDVI records and the MODIS records over the three analyzed regions was estimated. 

Here, the correlation was evaluated over the same epoch; day of data gathering since 

the fused-NDVI data had its dates of resampling from the MODIS dataset. While the 

correlation between the Landsat and the fused data, due to the different temporal 

resolution of the two datasets, had been estimated between the closest epochs. 

 

The identical trends of MODIS NDVI and the fused-NDVI records (Figure 28,Figure 

29, and Figure 30) highlight the suitability and potential of the fused-NDVI to 

characterize the vegetation condition over the cropland during the study period as 

well, this confirms the assumption of the linear regression model that describes the 

relationship between the Landsat and MODIS NDVI made by M. He et al. [2]. 

Moreover, the strong correlation values between the MODIS and the fused NDVI (0.99 

in the Algazeera region, 0.97 in the North Kurdufan region, and 0.98 in the Algadaref 

region) explained the limitations that the MODIS and Fused derived VCI maps have 

in emphasizing the extreme vegetation conditions compared with the high sensitivity 

of the Landsat-based VCIs results in detecting such events.  

 

Figure 31, and Figure 32 show the trends of the Landsat and the fused NDVI records. 

The corresponding estimated correlation results between the two datasets (0.75 in the 

Algazeera region, 0.75 in the North Kurdufan region, and 0.87 in the Algadaref region) 
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provide insight into the reliability of the fused NDVI with respect to the Landsat data, 

especially in the latest region. 

 

The fused records describe the vegetation condition on an 8-day basis over the 

cultivation season of 2015. Figure 33 shows the evolution of the drought situation from 

the 18th of June till the 20th of July. Here, most of the cropland experienced extreme 

or distributed severe drought. This gives insight that the drought onset was occurred 

before the determined start of the cultivatioin season. In the next two weeks, the crops 

condition was improved slightly, and the drought concentration decreased especially 

in Algazeera and the southern parts of Algadaref region.  

 

By the 5th of August (Figure 34), the central parts of North Kurdufan region, the 

western and southwest parts of Algadaref, and all of Algazeerah region, the vegetation 

condition became either light drought or no drought situation. The situation remained 

from the 5th of August showed till the 29th of August image shows a considerable 

improvement in the vegetation condition in the overall cropland mask which 

continued till the 22nd of September where the vegetation condition reached its peak 

in both Algazeera and North Kurdufan regions, while in Algadaref, the seasonal 

optimal point was reached in VCI map of the 28th of October (Figure 35). These results 

confirm the stability of the extracted phenological information from MODIS land 

dynamics that showed different time intervals of different regions. 

 

 

Figure 28. MODIS and fused NDVI values over Algazeera region 
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Figure 29. MODIS and fused NDVI values over North Kurdufan region 

 

Figure 30. MODIS and fused NDVI values over Algadaref region 
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Figure 31. Landsat and fused NDVI values over Algazeera region 

 

 

Figure 32. Landsat and fused NDVI values over Algadaref region 
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Figure 33. The 8-day fused-based VCI between June 18th and July 20th  

 

Figure 34. The 8-day fused-based VCI between July 28th and August 29th  
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Figure 35. The 8-day fused-based VCI between September 6th and October 8th  
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Figure 36. The 8-day fused-based VCI between October 16th and November 17th  

By the 24th of October, the cropland areas in North Kurdufan region were became 

drought areas again while the vegetation in Algadaref and Algazeera experiences no 

drought till the end of the first decade of November.  

The provided fused maps coincide with the monthly-based results shown by MODIS 

and Landsat for the same agricultural season. However, it can be recognized that the 

fused data has less sensitivity to the vegetation extremes compared with the maps 

generated from Landsat observations. This can be attributed to the higher correlation 

between the fused data and the MODIS one when compared with the correlation 

between the fused data and the Landsat ones and because of the higher spectral 

resolution that the Landsat 7 has. 

 

Generally, the produced maps from the fused data coincided with the monthly-based 

VCI maps of MODIS and Landsat and showed the success of the derived VCI from the 

fused dataset in describing the temporal evolution of the drought and the vegetation 

condition over time. Moreover, the fused data emphasized the spatial pattern of the 

drought distribution over the cropland that the two original sensors identified.   
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4.7 Affected population by the agricultural drought 

 

The affected population by the agricultural drought was estimated thanks to the 

WorldPop data over the three analyzed regions. Figure 37 below shows the increase in 

the population in the three regions. While Figure 38 gives information about the 

percentage of the estimated affected population in each region. 

  

The affected percentages of the population over the study period have fluctuated 

between 3% to 5% of the total population in the Algazeera and Algadaref regions and 

between 1.5% to 4.5% for the North Kurdufan region. 

 

The relatively low percentages of the affected population with respect to the estimated 

percentages of the affected cropland areas indicate the lower density of population in 

the affected areas. This information reflects the rapid immigration of the population 

from the rural areas toward the big cities as reported by the national and international 

reports. 

 

 

 

Figure 37. The population over the three study regions between 2009 and 2019 
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Figure 38. The percentage of the affected population in North Kurdufan region 
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5. Conclusion and future 

improvements 

 

In this chapter, a summary of the conducted work and the conclusions of the study 

will be addressed. Furthermore, the limitations that face the work will be shown as 

well as the proposed future improvements. 

5.1 Conclusions 

  

• The main objective of this study was to characterize the spatial and temporal 

pattern of the agricultural drought in the irrigated and rainfed cropland in 

Sudan during the cultivation seasons over the period from 2009 to 2019 using 

Landsat 7 and MODIS optical satellite-based observations.  

 

• For the above-mentioned purpose, multiple remote sensing datasets were 

utilized. The MODIS land dynamics dataset was used in identifying the 

agricultural season duration, and the results showed its capability to determine 

the agricultural season’s start, length, and duration. 

 

• The Landsat 7 and MODIS surface reflectance observations were used to 

develop the vegetation condition index (VCI) over the study regions. The VCI 

was implemented on an annual and monthly basis. The obtained results 

confirmed the index maps' ability to describe the various agricultural drought 

characteristics (onset, duration, intensity, and frequency) across the study areas. 

However, the results highlighted the potential of the Landsat 7 based index to 

detect extreme vegetation conditions spatially and temporally. 

 

• A fused NDVI record was generated thanks to an empirical linear regression 

model blending spectral information from overlapped Landsat 7 and MODIS 

observations to overcame the limitations of the original sensors and benefited 

from their finer resolution (30m spatial resolution and 8-day temporal 
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resolution). The VCI derived from the fused data showed drought 

characteristics that were consistent with the information from Landsat and 

MODIS sensors, with the drought in higher temporal resampling and the ability 

to be integrated with an early warning system for drought detection and 

monitoring. 

 

• The results emphasized that the 2009, 2011, and 2015 seasons were the most 

affected by the drought, while the 2012, 2016, and 2018 seasons experienced the 

least drought intensity. As a reference for understanding agricultural drought 

frequency and the vulnerable sites and assisting in future policymaking, an 

accumulated drought-counter image for each of the two sensors was created. 

The most vulnerable locations in the counter images were consistent with the 

local authorities' reports. 

 

• In terms of the affected population, the percentage of the annual vulnerable 

population was less than 5% in each of the three regions, and the vast majority 

of them were in rural areas. 

 

5.2 Limitations and future improvements  

 

• The relatively low temporal resolution of the Landsat 7 despite of its reliable 

spatial resolution was acting as a barrier for early detection and/ or rapidly 

monitoring of the agricultural drought over the study area.  

 

• The lack of ground truth data about the drought characteristics, in addition to 

the hardness of access to the local information about the agricultural data, 

especially in the rainfed cultivation regions, was one of the biggest issues that 

faced the study. Moreover, most of the local accessible sources were suffering 

from a lack of continuous updates, which made the temporal information 

needed for the evaluation incomplete. 
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• The high time required to process the fusion data compared with the process 

time needed for elaporating MODIS and Landsat introduces a challenge for 

using this data for analyzing agriculture over a long period of analysis. One 

proposed future improvement is to generate a continuously updated fused 

record from the newly acquired MODIS and Landsat data so that it is ready to 

use in the Google Earth Engine.  
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