ING - Scuola di Ingegneria Industriale e dell'Informazione
29-apr-2020
2018/2019
Le patologie cardiovascolari rappresentano ancora oggi una delle principali cause
di morte al mondo. La causa scatenante della maggior parte di questi eventi cardiovascolari
è l'aterosclerosi, un processo patologico sistemico nel quale depositi
adiposi, cellule infiammatorie e tessuto cicatriziale si depositano all'interno delle
pareti delle arterie. In particolare, uno dei siti preferenziali per la formazione della
placca aterosclerotica è la biforcazione delle arterie carotidi. I metodi computazionali
rappresentano uno strumento non invasivo utile per dare informazioni quantitative
riguardo alla previsione della formazione, l'evoluzione e rottura della placca nelle
carotidi. Per fare questo la presenza della placca deve essere presa in considerazione
nel modello. Tuttavia la difficoltà nel delineare i singoli componenti della placca e
irregolarità nella sua morfologia, hanno reso la ricostruzione della placca una sfida
ardua.
In questo contesto, l'obbiettivo della tesi è di sviluppare un tool geometrico
che permetta la ricostruzione della placca partendo da geometrie in presenza di
stenosi e in queste investigare gli effetti della presenza della placca sull'emodinamica
utilizzando simulazioni fluido struttura 3D.
Nella prima parte del lavoro ci siamo focalizzati sul problema della ricostruzione
della placca da immagini mediche. In particolare abbiamo affrontato due differenti
scenari. Il primo consiste in una semplice geometria cilindrica con tre diversi livelli
di restringimento di forma simmetrica: lieve, moderato e severo. Nel secondo
caso in geometrie paziente-specifico. In particolare abbiamo considerato tre diverse
biforcazioni carotidee con differenti livelli di stenosi.
Per ogni caso il punto di partenza è il lume del vaso stenotico . Nel caso del cilindrico è
stato facile ricostruire la placca per via della forma simmetrica della stenosi. Nel caso
delle carotidi, invece non è stato facile riconoscere la posizione esatta della placca
per via delle irregolarità morfologiche e la collaborazione con il chirurgo vascolare è
stata necessaria.
La seconda parte del lavoro è stata dedicata a eseguire simulazioni
fluido struttura nelle precedenti geometrie. Nel caso del cilindro abbiamo assunto la placca essere composta da un singolo componente con proprie caratteristiche meccaniche.
In particolare il valore della rigidezza della placca è stata impostata il doppio di
quello del vaso. Nel secondo caso, per ogni carotide, tre differenti tipi di placche
sono state identificate, sulla base delle loro caratteristiche meccaniche: placca lipidica
(bassa rigidezza), placca fibrotica (media rigidezza) e placca calcifica (alta
rigidezza). Sulla base di queste scelte sono stati investigati gli effetti di diversi gradi
di stenosi (nel caso cilindrico) e differenti tipi di placche (nelle carotidi) sugli indici
emodinamici confrontando questi valori con quelli ottenuti con il caso in cui la la
placca è stata modellata attraverso l'inclusione di una stenosi nel lume.
Nel caso cilindrico le nostre indagini hanno sottolineato che per livelli di stenosi
bassi (nel nostro lavoro fino a 35%) l'introduzione della placca nel modello struttura
non ha influenza sull'emodinamica, mentre per gradi di stenosi più elevati la placca
influisce sulle quantità emodinamiche, specialmente sulla pressione, sul Wall Shear
Stress e sul Time-Average Wall Shear Stress.
Nel caso delle carotidi, i risultati suggeriscono che le differenti rigidezze delle
placche influenzano la pressione, il Wall Shear Stres, il Time-Average Wall Shear
Stress e gli sforzi di Von Mises.
Cardiovascular diseases still represent one of the top causes of death in the world. The underlying cause for the majority of these cardiovascular events is atherosclerosis, a systemic disease process in which fatty deposits, inflammation cells, and scar tissue build up within the walls of the arteries. Carotid arteries represent a preferential site for the development of atherosclerotic plaques. Computational methods represent a non-invasive way to describe the prediction of the formation, the evolution and the rupture of plaque in carotids. To do this the plaque has to be taken into consideration in the model. However, the difficulty to delineate different plaque components and the irregularities in plaque morphology, make the reconstruction of the plaque a current challenging task. In this context, the aim of this thesis is to develop a tool that allows to recreate the plaque from stenotic geometries and in these geometries investigate the effects in the blood flow through 3D Fluid Structure Interaction (FSI) simulations.
In the first part of the work we focused on the issue of the plaque reconstruction from medical images. In particular we addressed two different scenarios. The first one consists in simple cylindrical geometry, where different levels of geometric-shaped symmetric narrowings were created: mild, moderate and severe. The second case in patient-specific geometries. In particular we considered three carotid bifurcations with different levels of stenosis.
For each case the starting point is the stenotic lumen vessel. In cylindrical case it was easy to reconstruct the plaque because the stenosis has a regular and symmetrical shape. Instead, in the carotids due to the complex shape of the plaque, the collaboration with the vascular surgeon has been necessary.
The second part of the work has been dedicated to perform FSI simulations in the previous geometries. In particular two different mechanical characterization approaches were assumed in the two situations.
In the cylindrical case, plaque was assumed to be composed by a single component with own mechanical properties. The stiffness value was set twice the value of the healthy vessel.
In the second case for each stenotic carotid, three different kind of plaque were tested based on the mechanical properties: echolucent plaque or lipidic plaque (low stiffness), mixed plaque (intermediate stiffness) and calcified plaque (high stiffness).
Based on these choices, effects of different degrees of stenosis (cylindrical case) and different kind of plaque (patient-specific geometries) in haemodynamic indexes were investigated, making the comparison with the case in which the plaque has been modeled only through the inclusion of a stenosis in the fluid lumen.
In the cylindrical case our investigation underlined that for low levels of stenosis (in our work up to 35\%) the inclusion of the plaque in the structure model does not affect fluid variables like velocity and pressure and haemodynamic indexes resulting unnecessary; while for greater degrees of narrowingst the plaque has an effect in the haemodynamics especially in the pressure, Wall Shear Stress and Time-average Wall Shear Stress.
In the carotids case we found that stiffness of the plaque affects pressure, Wall Shear Stress, Time-Average Wall Shear Stress and Von Mises stresses