The possibility of reusing a concrete composite based structure after it is exposed to a severe loading condition such as fire, highly depends on the residual bearing capacity and residual deflections. In this case, knowing the post-cracking residual behaviour of the material is crucially important. The great advantage of steel fibre-reinforced concrete’s (SFRC) high tensile strength makes it preferable instead of welded reinforcement especially for thin cross sections. However, the behaviour of the SFRC under high temperature are not yet well known particularly in terms of tensile creep. The previous work 2005-2006 has already investigated the behaviour of SFRC when exposed to high temperature and developed a damage model able to predict the bending behaviour of fibre-reinforced concrete in fire conditions. Following the aforementioned work, a further analysis are carried on using the same material in order to assess the tensile behaviour of SFRC under high temperatures. In this thesis, numerical models are created to understand the mechanical and thermal strain components later to be used for tensile creep investigations. The material used has a matrix strength equal to 75 N/mm2, a content of 50 kg/m3 of hooked end 30 mm long fibres with an aspect ratio equal to 45. The specimens are cored cylindrically with diameter of 75 mm from pre-casted beams for the PhD thesis. The double-edge wedge splitting test is decided to be used, hence, the specimen edges are cut according to details described for. In order to arrange proper settings of numerical models using finite element analysis, an experimental preliminary test carried out in the laboratory conditions under room temperature. The gained results are compared with the desired behaviour and a convenient height for specimen geometry is selected suitable for producing a tensile behaviour along its ligament. The importance of thermal stresses are investigated and an optimal heating rate that satisfies the conditions is chosen. Beside the thermal analysis, to be able to perform thermo-mechanical analysis, a test setup is designed that allows heating and loading of the specimen simultaneously. Each element of test setup is described and production details are explained. The test setup is also modelled numerically by FE analysis. Furthermore, the suitability of the specimen for fulfilling the requirements of DEWS test under high temperatures are investigated. Finally, the analysis are continued for different heating and loading sequences in order to completely observe the thermal and mechanical behaviour of the FRC material which forms the two important components of total strain.
La possibilità di riutilizzare una struttura in calcestruzzo dopo una condizione eccezionale comel’ incendio, dipende molto dalla capacità portante residua del materiale e dalle sue deformazionii. In questo caso, conoscere il comportamento della resistenza residua del materiale ha un’importanza fondamentale. L’elevata resistenza a trazione del calcestruzzo fibrorinforzato lo rende un’ottima alternativa all’armatura diffusa soprattutto negli elementi sottili. Tuttavia, il comportamento del SFRC ad alta temperatura non é ancora ben noto in particolare le deformazioni viscose associate alle alte temperature. Il comportamento del SFRC esposto ad alta temperatura é già studiato nel passato (2005-2006) con riferimento ad un modello di danno in grado di prevedere il comportamento a flessione del calcestruzzo fibrorinforzato in condizioni di un incendio. Seguendo il precedente lavoro, un’ ulteriore analisi é stata effettuata utilizzando lo stesso materiale per valutare il comportamento della viscosità del calcestruzzo fibrorinforzato ad alta temperatura. In questa tesi sono stati realizzati alcuni modelli numerici per comprendere i componenti della tensione termica e meccanica da utilizzare per l’indagine della viscosità ad alta temperatura. Il materiale utilizzato ha una matrice di resistenza pari a 75 N/mm2, un contenuto di fibre uncinate pari a 50 kg/m3, fibre lunghe 30 mm e con un rapporto d’aspetto pari a 45. I campioni cilindrici con un diametro di 75 mm sono estratti da travetti utilizzati per la caratterizzazione. É stato deciso di utillizzare la prova DEWS per la caratterizzazione in trazione e quindi, le superifici del cilindro sono state opportunamente intagliate. Per definire le impostazioni corrette dei modelli numerici agli elementi finiti, una prova sperimentale preliminare é stata effettuata in laboratorio alle condizioni della temperatura ambiente. I risultati ottenuti sono confrontati con il comportamento desiderato ed é stato selezionato il campione con una conveniente altezza per lo studio dei fenomeni viscosi. L’importanza dello studio delle sollecitazioni termiche consiste nel definire un processo di riscaldamento ottimale che soddisfi la condizione scelta. Per poter effettuare analisi termo-meccanica oltre all’analisi termica, si è considerata una configurazione di test che permette simultaneamente il riscaldamento e il caricamento del campione. Sono stati descritti ogni elemento della configurazione di prova e i dettagli della produzione. La configurazione della prova é anche modellato numericamente dagli analisi FE. Inoltre, é stato indagata l’adeguatezza del campione per soddisfare i requisiti della prova DEWS ad alte temperature. Infine, l’analisi é stata condotta per diverse sequenze di riscaldamento e di carico per osservare il le deformazioni termiche e meccaniche del materiale FRC che costituiscono due componenti importanti della deformazione totale.
Preliminary assessment of transient creep on fibre-reinforced concrete
ASKIN, BURAK;SIGIN, ALI
2014/2015
Abstract
The possibility of reusing a concrete composite based structure after it is exposed to a severe loading condition such as fire, highly depends on the residual bearing capacity and residual deflections. In this case, knowing the post-cracking residual behaviour of the material is crucially important. The great advantage of steel fibre-reinforced concrete’s (SFRC) high tensile strength makes it preferable instead of welded reinforcement especially for thin cross sections. However, the behaviour of the SFRC under high temperature are not yet well known particularly in terms of tensile creep. The previous work 2005-2006 has already investigated the behaviour of SFRC when exposed to high temperature and developed a damage model able to predict the bending behaviour of fibre-reinforced concrete in fire conditions. Following the aforementioned work, a further analysis are carried on using the same material in order to assess the tensile behaviour of SFRC under high temperatures. In this thesis, numerical models are created to understand the mechanical and thermal strain components later to be used for tensile creep investigations. The material used has a matrix strength equal to 75 N/mm2, a content of 50 kg/m3 of hooked end 30 mm long fibres with an aspect ratio equal to 45. The specimens are cored cylindrically with diameter of 75 mm from pre-casted beams for the PhD thesis. The double-edge wedge splitting test is decided to be used, hence, the specimen edges are cut according to details described for. In order to arrange proper settings of numerical models using finite element analysis, an experimental preliminary test carried out in the laboratory conditions under room temperature. The gained results are compared with the desired behaviour and a convenient height for specimen geometry is selected suitable for producing a tensile behaviour along its ligament. The importance of thermal stresses are investigated and an optimal heating rate that satisfies the conditions is chosen. Beside the thermal analysis, to be able to perform thermo-mechanical analysis, a test setup is designed that allows heating and loading of the specimen simultaneously. Each element of test setup is described and production details are explained. The test setup is also modelled numerically by FE analysis. Furthermore, the suitability of the specimen for fulfilling the requirements of DEWS test under high temperatures are investigated. Finally, the analysis are continued for different heating and loading sequences in order to completely observe the thermal and mechanical behaviour of the FRC material which forms the two important components of total strain.File | Dimensione | Formato | |
---|---|---|---|
2014_12_Askin_Sigin.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
5.35 MB
Formato
Adobe PDF
|
5.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/101941