Nucleic acids amplification and analysis are the cornerstones of molecular biology and genetics. These two methodologies can be performed in vitro by using a procedure called Polymeraze chain reaction (PCR). This method can be used to obtain and analyze large quantities of a particular target sequence contained in a nucleic acid sample. The PCR mimics the physiological DNA replication and is composed of many elements such as the individual nucleotides, enzymes, a buffer, primers in order to initiate the replication and the sample sequence. The activation of these elements and all the process is driven by thermal cycles. PCR allows an exponential increase of the target sequence. In order to analyze and quantify DNA, PCR evolutions have been developed such as Real Time PCR which allows a quantitative analysis of DNA through DNA binding fluorescence probes. Another evolution is represented by the Digital PCR that compared to the other techniques provides results on the concentration of DNA without any type reference to calibration lines. Digital PCR provide an absolute quantification of DNA. In order to quantify nucleid acids the Digital PCR uses statistical phenomena related to the Poisson distribution. By dividing the buffer into a sufficiently large number of wells we can state that in a given well there will be only one or none DNA strand. Starting from this condition and continuing amplification it is possible to obtain the exact number of initial molecules within a certain confidence interval. The Digital PCR is therefore a very powerful technique for the quantification of nucleic acids. The purpose of this thesis is the design and development of a microfluidic chip for Digital PCR; the main parts are:the lab-on-chip, the pumping system, the valves and the fluid connections. The lab-on-chip has a lower part of silicon and silicon oxide while its upper part is made in polydimethylsiloxane (PDMS). The two layers are connected by a layer of photoresist (SinR) in which microfluidic structures have been obtained by photolithography. The pumping system is a peristaltic system where the tube has been incorporated into the chip and the rollers of the rotor are driven by an external motor which compresses the PDMS. PDMS deformations induce the movement of the fluid into the chip. The valves have also been developed embedded into the chip allowing to drain selectively from the various reservoirs and they also allow to open/close the outlet of the chip. A simple circuit board have neen developed in order to control the fluidic system. In addition, a heating circuit and a circuit for the control of the temperature of the chip have been integrated ; this part has been adapted from another device manufactured by STMicroeltronics. Finally, we developed a simple optical unit in order to observe the chip during the various stages of the heating . In the results chapter he lithography process for the SINR has been optimized and qualitative and quantitative values about microfluidic component are presented. It is shown how the geometry of the pump allows to vary the flow rate of many orders of magnitude; it was verified the efficiency of the valves and the filling process of the chip. Finally it was studied the sample evaporation during thermal cycling because at low volumes the main risk is the total loss of the sample by evaporation. In this case, a solution was found based on a simple model for the permeability of the various layers and by changing the boiling point of the mixture for PCR.
L'amplificazione e l'analisi degli acidi nucleici sono le colonne portanti della biologia molecolare e della genetica. Tali metodologie vengono sviluppate in vitro tramite la Polymeraze chain reaction (PCR) la quale consente, partendo da una sequenza nucleica complessa campione, di ottenere grandi quantitativi di una particolare sequenza bersaglio contenuta nel campione e analizzarla tramite apposite sonde. La PCR imita la fisiologica replicazione del DNA ed è composta da elementi quali le singole basi azotate, enzimi, un buffer, dei \textit{primer} per dare inizio alla replicazione e la sequenza campione. L'attivazione di questi elementi e il proseguire della reazione è guidato da cicli termici controllati. Considerando come campione di partenza un doppio filamento di DNA avremo ottenuto dopo n cicli di PCR un aumento esponenziale della particolare sequenza amplificata. Per l'analisi e la quantificazione del DNA si sono sviluppate diverse evoluzioni della PCR classica quali la Real Time PCR che permette un analisi quantitativa del DNA grazie a opportune sonde leganti del DNA e rilevate in fluorescenza. Un'altra evoluzione è rappresentata dalla Digital PCR, essa rispetto alle altre tecniche fornisce risultati sulla concentrazione del DNA in senso assoluto, ovvero senza far riferimento a rette di taratura. La Digital PCR sfrutta fenomeni statistici legati alla distribuzione di Poisson; dividendo il buffer in un numero sufficientemente grande di pozzetti si otterrà con buona probabilità che in un determinato pozzetto vi sia solo un filamento di DNA o che non vi sia. Partendo da ciò e proseguendo nell'amplificazione è possibile ricavare il numero esatto di molecole iniziali con un certo intervallo di confidenza. La Digital PCR risulta quindi una tecnica molto potente per la quantificazione di acidi nucleici. Lo scopo della tesi è il progetto e lo sviluppo di un chip microfluidico per Digital PCR; esso è costituito da: \textit{lab-on-chip}, sistema di pompaggio, valvole, connessioni fluidiche. Il \textit{lab-on-chip} ha un parte inferiore di silicio e ossido di silicio e una parte superiore in polidimetilsilossano (PDMS) connesse tramite uno strato di fotoresist SinR in cui tramite fotolitografia sono state ottenute le strutture microfluidiche. Il sistema pompante è di tipo peristaltico dove il sottopompa è stato inglobato nel chip e i rulli del rotore sono azionati da un motore esterno il quale comprime il PDMS, un polimero elastico, generando il movimento del fluido nel chip. Le valvole sviluppate anch'esse inglobate sul chip permettono di attingere selettivamente dai vari serbatoi in ingresso e di aprire o chiudere l’outlet del chip. Inoltre è stata creata una semplice scheda elettronica per il controllo della pompa e delle valvole e, sempre all'interno della stessa scheda, è stato inserito un circuito di riscaldamento e controllo della temperatura del chip proveniente da un altro dispositivo prodotto da STMicroeltronics. Infine è stata sviluppata una semplice unità ottica per poter visualizzare il chip durante le varie fasi del riscaldamento previste dalla PCR. A livello di risultati vengono riportati i parametri per l'ottimizzazione del processo litografico relativo al SinR; e sono stati ricavati valori qualitativi e quantitativi per quanto concerne la componente microfluidica. Si è dimostrato come la geometria della pompa permetta di variare la portata anche di molti ordini di grandezza; è stata verificate l'efficienza delle valvole e del processo di riempimento del chip. Infine è stata studiata l'evaporazione del campione durante i cicli termici in quanto con bassi volumi il rischio principale è lo svuotamento totale del chip. In questo caso è stata trovata una soluzione basandosi su un semplice modello per la permeabilità dei vari strati e agendo sul punto di ebollizione della mix della PCR.
Progettazione e sviluppo di un chip microfluidico per digital PCR
CLERICI, MARCO
2013/2014
Abstract
Nucleic acids amplification and analysis are the cornerstones of molecular biology and genetics. These two methodologies can be performed in vitro by using a procedure called Polymeraze chain reaction (PCR). This method can be used to obtain and analyze large quantities of a particular target sequence contained in a nucleic acid sample. The PCR mimics the physiological DNA replication and is composed of many elements such as the individual nucleotides, enzymes, a buffer, primers in order to initiate the replication and the sample sequence. The activation of these elements and all the process is driven by thermal cycles. PCR allows an exponential increase of the target sequence. In order to analyze and quantify DNA, PCR evolutions have been developed such as Real Time PCR which allows a quantitative analysis of DNA through DNA binding fluorescence probes. Another evolution is represented by the Digital PCR that compared to the other techniques provides results on the concentration of DNA without any type reference to calibration lines. Digital PCR provide an absolute quantification of DNA. In order to quantify nucleid acids the Digital PCR uses statistical phenomena related to the Poisson distribution. By dividing the buffer into a sufficiently large number of wells we can state that in a given well there will be only one or none DNA strand. Starting from this condition and continuing amplification it is possible to obtain the exact number of initial molecules within a certain confidence interval. The Digital PCR is therefore a very powerful technique for the quantification of nucleic acids. The purpose of this thesis is the design and development of a microfluidic chip for Digital PCR; the main parts are:the lab-on-chip, the pumping system, the valves and the fluid connections. The lab-on-chip has a lower part of silicon and silicon oxide while its upper part is made in polydimethylsiloxane (PDMS). The two layers are connected by a layer of photoresist (SinR) in which microfluidic structures have been obtained by photolithography. The pumping system is a peristaltic system where the tube has been incorporated into the chip and the rollers of the rotor are driven by an external motor which compresses the PDMS. PDMS deformations induce the movement of the fluid into the chip. The valves have also been developed embedded into the chip allowing to drain selectively from the various reservoirs and they also allow to open/close the outlet of the chip. A simple circuit board have neen developed in order to control the fluidic system. In addition, a heating circuit and a circuit for the control of the temperature of the chip have been integrated ; this part has been adapted from another device manufactured by STMicroeltronics. Finally, we developed a simple optical unit in order to observe the chip during the various stages of the heating . In the results chapter he lithography process for the SINR has been optimized and qualitative and quantitative values about microfluidic component are presented. It is shown how the geometry of the pump allows to vary the flow rate of many orders of magnitude; it was verified the efficiency of the valves and the filling process of the chip. Finally it was studied the sample evaporation during thermal cycling because at low volumes the main risk is the total loss of the sample by evaporation. In this case, a solution was found based on a simple model for the permeability of the various layers and by changing the boiling point of the mixture for PCR.File | Dimensione | Formato | |
---|---|---|---|
2014_12_CLERICI.pdf
solo utenti autorizzati dal 03/12/2015
Descrizione: Testo della tesi
Dimensione
24.23 MB
Formato
Adobe PDF
|
24.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/102161