Wireless sensor networks have been widely deployed to perform sensing constantly at specific locations, but their energy consumption and deployment cost are of great concern. With the popularity and advanced technologies of mobile phones, participatory sensing is a rising and promising field which utilizes mobile phones as mobile sensors to collect data, though it is hard to guarantee the sensing quality and availability under the dynamic behaviors and mobility of human beings. Based on the above observations, we suggest that wireless sensors and mobile phones can complement each other to perform collaborative sensing efficiently with satisfactory quality and availability. In this work, an optimization model is proposed for collaborative sensing between stationary sensors and mobile phone users, where the objective is to minimize the data acquisition cost for a central entity called data sink. The mixed integer linear programming model allows to select different type of data from the sensor nodes and mobile phones with a minimum cost, while taking into account the accuracy, transmission of data, area coverage and interference. We provide the optimal solutions for different scenarios, and discuss the effect of different parameters on the cost of data sink.
Le Wireless Sensor Networks hanno permesso di rilevare dati in maniera costante in particolari aree geografiche, ma i problemi riguardanti il loro consumo energetico e i costi di sviluppo sono di grande importanza. Il Participatory Sensing permette di utilizzare gli smartphones degli utenti privati come sensori mobili per rilevare dati nell’ambiente circostante, sebbene è difficile garantire sempre la disponibilità e la qualità a causa della loro mobilità. È possibile pensare quindi che le Wireless Sensor Networks e gli smartphones degli utenti mobili possono collaborare tra di loro per raccogliere dati dall’ambiente circostante con una certa qualità e continuità. In questo lavoro di tesi, viene proposto un modello di ottimizzazione per il sensing collaborativo tra i sensori statici e gli utenti degli smartphones, con l’obiettivo di minimizzare il costo di acquisizione delle informazioni da parte di un’entità centrale chiamata data sink. Il modello sviluppato permette al data sink di acquisire differenti tipi di dati dai sensori e dagli smartphones ad un costo minimo, tenendo conto di aspetti come l’accuratezza dei dati, la copertura dell’area geografica considerata, i costi di trasmissione dati e l’interferenza tra i sensori statici.
Un modello di ottimizzazione per il sensing collaborativo
SARCINELLA, MARCO
2013/2014
Abstract
Wireless sensor networks have been widely deployed to perform sensing constantly at specific locations, but their energy consumption and deployment cost are of great concern. With the popularity and advanced technologies of mobile phones, participatory sensing is a rising and promising field which utilizes mobile phones as mobile sensors to collect data, though it is hard to guarantee the sensing quality and availability under the dynamic behaviors and mobility of human beings. Based on the above observations, we suggest that wireless sensors and mobile phones can complement each other to perform collaborative sensing efficiently with satisfactory quality and availability. In this work, an optimization model is proposed for collaborative sensing between stationary sensors and mobile phone users, where the objective is to minimize the data acquisition cost for a central entity called data sink. The mixed integer linear programming model allows to select different type of data from the sensor nodes and mobile phones with a minimum cost, while taking into account the accuracy, transmission of data, area coverage and interference. We provide the optimal solutions for different scenarios, and discuss the effect of different parameters on the cost of data sink.File | Dimensione | Formato | |
---|---|---|---|
2015_04_Sarcinella.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/106523