The aim of this work is to show a financial application of calculus on GPUs, i.e. graphic processing units. Using CUDA, a parallel programming model created by nVIDIA for general purpose computing, we face the pricing problem of some credit derivatives, such as Nth- to-Default Swaps and Synthetic Collateralized Debt Obligations, and the calculation of Expected Exposure and Credit Valuation Adjustment of an Interest Rate Swap, that is the credit exposure plus a price correction in order to take into account the counterparty credit risk. For this purpose, we exploit Monte Carlo and Quasi Monte Carlo methods for simulations. Moreover we model joint default times of the underlying reference portfolio of Nth-to-Default Swaps and Collateralized Debt Obligations, considering Gaussian and Student’s t copulas, and we deal with Vasicek, Hull-White and Cox-Ingersol-Ross interest rate models to evaluate Expected Exposure and Credit Valuation Adjustment. Therefore we created a C++/CUDA library1 which implements and solves the problems introduced. This dissertation is arranged in three parts: at the beginning we formally describe the structure of the derivatives and the models and methods used, then we analyze our source codes and finally we show the obtained results.
Lo scopo di questo elaborato è mostrare un'applicazione in ambito finanziario del calcolo su GPU, cioè sulle unità di elaborazione grafica. Utilizzando CUDA, un paradigma di programmazione parallela offerto da nVIDIA che permette appunto di sfruttare le schede grafiche, abbiamo affrontato il problema di pricing di alcuni derivati del credito, ovvero Nth-to-Default Swap e Collateralized Debt Obligation sintetici, e il calcolo di Expected Exposure e Credit Valuation Adjustment di un Interest Rate Swap, ovvero l'esposizione creditizia e la correzione al prezzo del derivato in modo da tenere conto del rischio di controparte. Per risolvere questi problemi abbiamo eseguito simulazioni con metodi di Monte Carlo e Quasi Monte Carlo, e abbiamo utilizzato copule gaussiane e t-Student per modellizzare le probabilità di default dei titoli sottostanti agli Nth-to-Default Swap e ai Collateralized Debt Obligation, e modelli di Vasicek, Hull-White e Cox-Ingersol-Ross per la simulazione dei tassi di interesse utilizzati per valutare Expected Exposure e Credit Valuation Adjustment. Questo lavoro è composto da una libreria scritta in C++/CUDA che implementa e risolve questi problemi e da questa tesi, che descrive prima in maniera formale i titoli finanziari succitati e i modelli e i metodi utilizzati, poi analizza il codice implementato e infine espone i risultati ottenuti.
Pricing di derivati del credito e credit valuation adjustment su multi-GPU
RE, GIORGIO GIUSEPPE
2013/2014
Abstract
The aim of this work is to show a financial application of calculus on GPUs, i.e. graphic processing units. Using CUDA, a parallel programming model created by nVIDIA for general purpose computing, we face the pricing problem of some credit derivatives, such as Nth- to-Default Swaps and Synthetic Collateralized Debt Obligations, and the calculation of Expected Exposure and Credit Valuation Adjustment of an Interest Rate Swap, that is the credit exposure plus a price correction in order to take into account the counterparty credit risk. For this purpose, we exploit Monte Carlo and Quasi Monte Carlo methods for simulations. Moreover we model joint default times of the underlying reference portfolio of Nth-to-Default Swaps and Collateralized Debt Obligations, considering Gaussian and Student’s t copulas, and we deal with Vasicek, Hull-White and Cox-Ingersol-Ross interest rate models to evaluate Expected Exposure and Credit Valuation Adjustment. Therefore we created a C++/CUDA library1 which implements and solves the problems introduced. This dissertation is arranged in three parts: at the beginning we formally describe the structure of the derivatives and the models and methods used, then we analyze our source codes and finally we show the obtained results.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Re.pdf
accessibile in internet per tutti
Descrizione: Testo della Tesi
Dimensione
5.56 MB
Formato
Adobe PDF
|
5.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/106742