Since its discovery by Iijima in 1991 Carbon nanotubes (CNTs) have attracted a lot of interest due to their unique electrical, thermal and mechanical properties. Accordingly, they have been studied for and used in a wide range of applications including polymer matrix composite materials, thermal management applications, field emission devices, and electrochemical energy systems, such as fuel cells and electrochemical capacitors. The Chemical Vapor Deposition (CVD) technique has become the most important commercial method for CNT production, including both multi-walled and single-walled carbon nanotubes (MWCNT and SWCNT, respectively) as well as carbon nano fibers (CNFs). Growth of CNTs on non-catalytic metallic substrates by the CVD method includes metals/materials that cannot catalyze the growth of CNTs on their own, thus requiring viable processing solutions enabling the CNT growth by an external catalyst. Among non-catalytic metallic substrates, Al has a number of remarkable advantages making it a desirable substrate of choice for growth of CNTs. First, aluminum is cheap and widely available, helping the cost-effectiveness of the entire process. Second, aluminum is one of the best electrical conductors and if coated by CNTs, can be of interest for many electrical and electrochemical applications. The dip-coating technique demonstrates several interesting advantages, such low cost and eases of the process, not requiring expensive technologies such as high vacuum, electric or magnetic fields and finally, having a negligible rate of energy consumption compared to other deposition techniques. We report a comprehensive study on the potential of dip-coating method for preparation of a Co-Mo binary catalyst layer on Al having thin oxide layer on top and evaluate the merits and drawback of the technique for CNT growth. Effect of different dip-coating parameters including immersion time, withdrawal rate, and concentration of additives like Ethylene Glycol (EG) and different surfactants on the CNT growth is assessed. Furthermore, different growth parameters in the CVD reactor, including the flow rate of the precursor gasses, hydrogen as the reducing gas, any probable clue in the hydrogen/ethylene ratio and the duration of the growth, were systematically investigated. Eventually, a kinetic model governing the growth of CNTs under the aforementioned conditions is proposed and discussed.
Sin dalla scoperta da parte di Iijima nel 1991, i nanotubi di carbono hanno attratto notevole interesse grazie alle loro uniche proprietà elettriche, termiche e meccaniche. In particolare sono stati studiati da diversi anni in un grande numero di applicazioni, quali i materiali compositi a matrice polimerica, nuovi materiali e strategie di dissipazione termica, dispositivi a emissione di campo, e sistemi elettrochimici di generazione e accumulo energia, quali celle a combustibile e supercondensatori. Il metodo più importante di produzione dei nanotubi di carbonio (CNTs) , sia di quelli a parete singola (SWCNT) , sia di quelli a parete multipla (MWCNT), come anche delle nanofibre di carbonio (CNFs), è la tecnica della deposizione chimica da fase gas, CVD. La crescita di nanotubi mediante CVD su un substrato non catalitico come l’alluminio richiede uno specifico trattamento del substrato inteso alla deposizione di un opportuno catalizzatore. L’interesse per la crescita diretta di CNT su alluminio è giustificato dalle proprietà del metallo, in particolare la conduttività elettrica, la bassa densità, l’ottima resistenza chimica in appropriate condizioni, oltre che dalla facile reperibilità e dal basso costo, e dalle prospettive applicative del foglio di alluminio rivestito di CNT per usi elettrici ed elettrochimici. La tecnica di deposizione nota come Dip-coating ha diversi vantaggi come il basso costo , la facilità di processo e il basso consumo energetico, in particolare rispetto alle tecniche di deposizione in vuoto, largamente utilizzate per la deposizione del catalizzatore su substrati per la crescita di CNT mediante CVD. Questo lavoro è uno studio dettagliato sulla potenzialità del dip-coating per la preparazione di uno strato di catalizzatore Co-Mo su alluminio in presenza di un sottile film di ossido. Lo studio sperimentale del processo ha preso in esame diverse parametri, quali il tempo di immersione, la velocità di estrazione e la concertazioni di additivi quali glicole etilenico e l’uso di surfattanti. Il processo CVD è stato parimenti studiato esplorando un ampio intervallo di parametri operativi, quali il flusso di gas precursore e di idrogeno, quindi il rapporto idrogeno etilene e la durata del trattamento. Infine si è proposto e discusso un modello cinetico per la crescita dei nanotubi.
Parametric study of the kinetics of CNT growth on Al substrate by chemical vapor deposition
NICKKHOLGH, AMIN
2014/2015
Abstract
Since its discovery by Iijima in 1991 Carbon nanotubes (CNTs) have attracted a lot of interest due to their unique electrical, thermal and mechanical properties. Accordingly, they have been studied for and used in a wide range of applications including polymer matrix composite materials, thermal management applications, field emission devices, and electrochemical energy systems, such as fuel cells and electrochemical capacitors. The Chemical Vapor Deposition (CVD) technique has become the most important commercial method for CNT production, including both multi-walled and single-walled carbon nanotubes (MWCNT and SWCNT, respectively) as well as carbon nano fibers (CNFs). Growth of CNTs on non-catalytic metallic substrates by the CVD method includes metals/materials that cannot catalyze the growth of CNTs on their own, thus requiring viable processing solutions enabling the CNT growth by an external catalyst. Among non-catalytic metallic substrates, Al has a number of remarkable advantages making it a desirable substrate of choice for growth of CNTs. First, aluminum is cheap and widely available, helping the cost-effectiveness of the entire process. Second, aluminum is one of the best electrical conductors and if coated by CNTs, can be of interest for many electrical and electrochemical applications. The dip-coating technique demonstrates several interesting advantages, such low cost and eases of the process, not requiring expensive technologies such as high vacuum, electric or magnetic fields and finally, having a negligible rate of energy consumption compared to other deposition techniques. We report a comprehensive study on the potential of dip-coating method for preparation of a Co-Mo binary catalyst layer on Al having thin oxide layer on top and evaluate the merits and drawback of the technique for CNT growth. Effect of different dip-coating parameters including immersion time, withdrawal rate, and concentration of additives like Ethylene Glycol (EG) and different surfactants on the CNT growth is assessed. Furthermore, different growth parameters in the CVD reactor, including the flow rate of the precursor gasses, hydrogen as the reducing gas, any probable clue in the hydrogen/ethylene ratio and the duration of the growth, were systematically investigated. Eventually, a kinetic model governing the growth of CNTs under the aforementioned conditions is proposed and discussed.File | Dimensione | Formato | |
---|---|---|---|
2015_04_Nickkholgh.pdf
non accessibile
Descrizione: "Thesis text"
Dimensione
17.3 MB
Formato
Adobe PDF
|
17.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107225