The research work of this thesis can be divided in two main parts, one dealing with stem cells based therapies for tissue engineering applications whereas the other dealing with the development of patterned functional biomaterial surfaces for rare cells capture and isolation. The goal of tissue engineering is to replace or to repair a damaged tissue or organ with artificial tissue made by seeding stem cells on a biomaterial acting as an extra-cellular matrix (ECM) and culturing them giving proper cues until maturation in a functional tissue ready to be transplanted. One promising strategy consists in addressing stem cells fate by fine-regulating their interaction within artificial microenvironments, “synthetic niches” engineered to mimic individual biochemical (e.g. delivery of soluble factors) and biophysical factors (e.g. substrate stiffness). To this end, the first part/objective of this PhD project aimed to independently investigate the specific role that niches physico-mechanical properties, in terms of scaffold geometry and surface stiffness, have on SCs response and to study the possibility to fine tune cell/material interactions. 3D freestanding niches with suitable geometry/features were fabricated by two-photon polymerization (2PP). Different immobilization strategy were explored to further functionalized 2PP niches with thin layers of biomimetic hyaluronan- and gelatin-based hydrogels, which were developed to have tailored stiffness encompassing the range of physiological values. Biological validation tests assessed the biocompatibility of all the coatings with enhanced cell proliferation with respect to uncoated niches. However, commitment towards the osteo-chondral lineage together with a stronger metabolic activity was observed just for gelatin-coated niches compared to hyaluronan-coated ones. The second objective of the research was the design and realization of target baits arrays for physically isolate rare cells from a heterogeneous population. The main advantage is the selective analysis of individual cellular processes instead of analyzing the behavior of the whole cell population, as for conventional cell-based assays. A fundamental issue was the selection of the substrate material that deeply affects the final performance of the array. Best performing materials should avoid non-specific cells binding, thus perfluoropolyethers (PFPEs) were considered due to their wide range of properties including very low surface tension, which enhances PFPEs anti-fouling/fouling release properties. Different photocurable PFPEs were compared and deeply characterized in terms of crosslinking kinetics, surface properties, transition temperatures and anti-fouling/fouling release characteristics to understand the relationship between structure and properties. PFPE-dimethacrylathes were selected as the most valuable candidates and derivatives of hyaluronic acid (HA) and heparin were immobilized as target baits for capture cancer cells and malaria-infected red blood cells respectively. To this end, photo-lithography and soft-lithography were developed and optimized as technologies to selectively functionalize PFPEs surfaces following different chemistries. Preliminary cellular tests, performed with cancer cells and malaria-infected red blood cells for HA pattern and heparin pattern respectively, assess the capability of patterned PFPEs surfaces in capturing individual population cells.
Il presente lavoro di ricerca affronta lo studio, la caratterizzazione e la funzionalizzazione di biomateriali per applicazioni in due campi distinti della bioingegneria: l’ingegneria dei tessuti e il patterning di biomolecole per l’immobilizzazione selettiva di cellule rare. L’obiettivo dell’ingegneria dei tessuti è la ricostruzione di un organo, o tessuto, danneggiato con un costrutto artificiale composto seminando cellule staminali su una matrice extracellulare sintetica (scaffold), ingegnerizzata perché fornisca adeguati stimoli affinchè le staminali differenzino e producano un tessuto funzionale disponibile per il trapianto. La differenzazione cellulare può essere guidata controllando l’interazione delle cellule con lo scaffold, a tal scopo è stato studiato il ruolo specifico che le proprietà fisico-meccaniche della matrice sintetica, in termini di geometria dello scaffold e rigidezza del substrato, hanno sul comportamento delle staminali. La tecnica laser di polimerizzazione a due fotoni (2PP) è stata sfruttata per ottenere microstrutture 3D con geometria e porosità controllata fino a scala cellulare (< 10 μm). Successivamente, differenti strategie di coating sono state ottimizzate per funzionalizzare le superfici degli scaffold con idrogeli di acido ialuronico e gelatina, sintetizzati e sviluppati per avere caratteristiche meccaniche variabili nel range dei valori fisiologici. La biocompatibilità degli scaffold rivestiti con idrogeli è stata verificata con test cellulari eseguiti seminando cellule staminali mesenchimali. Nonostante, i coating favoriscano la proliferazione cellulare, una prima differenziazione verso la linea osteo-condrale, affiancata da un’elevata attività metabolica, è stata osservata solo per le strutture rivestite con gelatina. Per quanto riguarda la seconda parte del lavoro, la realizzazione di pattern di biomolecole permette la separazione selettiva di cellule e conseguentemente lo studio di determinati processi cellulari. L’efficienza e la selettività di cattura dell’array finale di biomolecole dipende dalle proprietà del substrato sottostante che non deve favorire l’adesione aspecifica di proteine e cellule. A tal scopo, differenti perfluoropolieteri (PFPE) fotoreticolabili, già noti nell’industria nautica per le loro proprietà anti-fouling, sono stati confrontati e ampiamente caratterizzati in termini di proprietà meccaniche e di superficie con l’obiettivo di individuare una relazione fra la loro struttura e il loro comportamento anti-fouling. Successivamente, i PFPE con le migliori proprietà sono stati funzionalizzati con array di acido ialuronico e di eparina biopolimeri noti per la loro capacità di legarsi rispettivamente alle cellule tumorali e agli eritrociti infetti da malaria. Tecniche di fotolitografia e soft-litografia, insieme con differenti strategie di grafting, sono state sviluppate e ottimizzate per funzionalizzare selettivamente la superficie dei PFPE. Primi test cellulari effettuati incubando in condizioni statiche i pattern di acido ialuronico e di eparina hanno confermato sia la possibilità di sfruttare questi biopolimeri per la cattura di specifiche popolazioni cellulari sia le ottime proprietà anti-fouling dei PFPE selezionati.
Polymeric materials for advanced human health applications
CREDI, CATERINA
Abstract
The research work of this thesis can be divided in two main parts, one dealing with stem cells based therapies for tissue engineering applications whereas the other dealing with the development of patterned functional biomaterial surfaces for rare cells capture and isolation. The goal of tissue engineering is to replace or to repair a damaged tissue or organ with artificial tissue made by seeding stem cells on a biomaterial acting as an extra-cellular matrix (ECM) and culturing them giving proper cues until maturation in a functional tissue ready to be transplanted. One promising strategy consists in addressing stem cells fate by fine-regulating their interaction within artificial microenvironments, “synthetic niches” engineered to mimic individual biochemical (e.g. delivery of soluble factors) and biophysical factors (e.g. substrate stiffness). To this end, the first part/objective of this PhD project aimed to independently investigate the specific role that niches physico-mechanical properties, in terms of scaffold geometry and surface stiffness, have on SCs response and to study the possibility to fine tune cell/material interactions. 3D freestanding niches with suitable geometry/features were fabricated by two-photon polymerization (2PP). Different immobilization strategy were explored to further functionalized 2PP niches with thin layers of biomimetic hyaluronan- and gelatin-based hydrogels, which were developed to have tailored stiffness encompassing the range of physiological values. Biological validation tests assessed the biocompatibility of all the coatings with enhanced cell proliferation with respect to uncoated niches. However, commitment towards the osteo-chondral lineage together with a stronger metabolic activity was observed just for gelatin-coated niches compared to hyaluronan-coated ones. The second objective of the research was the design and realization of target baits arrays for physically isolate rare cells from a heterogeneous population. The main advantage is the selective analysis of individual cellular processes instead of analyzing the behavior of the whole cell population, as for conventional cell-based assays. A fundamental issue was the selection of the substrate material that deeply affects the final performance of the array. Best performing materials should avoid non-specific cells binding, thus perfluoropolyethers (PFPEs) were considered due to their wide range of properties including very low surface tension, which enhances PFPEs anti-fouling/fouling release properties. Different photocurable PFPEs were compared and deeply characterized in terms of crosslinking kinetics, surface properties, transition temperatures and anti-fouling/fouling release characteristics to understand the relationship between structure and properties. PFPE-dimethacrylathes were selected as the most valuable candidates and derivatives of hyaluronic acid (HA) and heparin were immobilized as target baits for capture cancer cells and malaria-infected red blood cells respectively. To this end, photo-lithography and soft-lithography were developed and optimized as technologies to selectively functionalize PFPEs surfaces following different chemistries. Preliminary cellular tests, performed with cancer cells and malaria-infected red blood cells for HA pattern and heparin pattern respectively, assess the capability of patterned PFPEs surfaces in capturing individual population cells.File | Dimensione | Formato | |
---|---|---|---|
2015_03_PhD_Credi_01.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi - parte 1
Dimensione
57.51 MB
Formato
Adobe PDF
|
57.51 MB | Adobe PDF | Visualizza/Apri |
2015_03_PhD_Credi_02.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi - parte 2
Dimensione
72.49 MB
Formato
Adobe PDF
|
72.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107246