Starting from its development in 1983, the Polymerase Chain Reaction technology began to establish itself as an essential technique for every biomolecular laboratory worldwide. The PCR is used to quickly obtain an amplification of a target DNA sequence in vitro. The information related to the amplification event can also be used as a detection method to check if the interested sequence is present or not in the evaluated biological sample. The spread of PCR technology has led to the development of many biomolecular analysis methods, used in plenty of different contexts. The amplification is possible thanks to the presence of specific reagents: two primers, particular DNA sequences that identify the beginning and the end of the target molecule, DNA polymerase enzyme and nucleotides, free in the solution. Thermal cycling is another fundamental element, necessary to succeed in the amplification. Real-Time PCR is the evolution of PCR. In this version of the technique the entire process is observed in real-time, thanks to the use of fluorescent labelling and optical detection technologies. The fluorescence amount detected at the end of every PCR cycle is proportional to the quantity of actually amplified DNA. Related data also allow making quantitative evaluations on the sample. The PCR technique gradually spread worldwide thanks to some important features. First with PCR it’s possible to obtain the desired result in a pretty short time and with a highly automated process. The technology also presents high levels of sensitivity and specificity. Nowadays PCR is executed with thermal cyclers, a complex, voluminous and expensive laboratory apparatus. Some years ago semiconductor manufacturer STMicroelectronics started a research activity to develop a compact, portable device, capable to execute Real-Time PCR analysis with an integrated approach. The Q3 Plus is the last developed version of this device. Its production has been possible thanks to the development of different technologies, such as MEMS (Micro Electro-Mechanical Systems) and Lab-on-a-chip. This system is made of three fundamental elements: the first one is related to the thermal control of the device, the second one to the optical detection and lastly there is a disposable cartridge. This chip is the part of the system where the user has to load the biological sample and where the polymerization reaction takes place. The Q3 Plus is a versatile device and it offers performance that are comparable to a standard thermal cycler. However it shows some limitations that influence its conditions of use. The main ones concern the necessity of a PC with its relative software and of constant connection to the power supply system, in order to operate. This work aims to design, develop and product the new version of this system. The goal is to overcome the observed limitations. The specifications required for this new device are the following: • Presence of an integrated user interface to allow the execution of a test without relying on a PC. • Capability of conducting a certain number of analyses without connecting to the power supply system. • Presence of a system that allows the execution of a large number of different tests, without limiting the device to its factory configuration. • Immediate availability of a test’s results and data, giving the opportunity of importing them on a PC for further processing. It is required to provide the largest number of elements relative to an enhanced portability of the device. • The user interface must be as clear as possible, designed to be appropriate for un-specialized users. An instrument developed following the given specification, could lead to the execution of biomolecular Real-Time PCR analysis in unexplored places, contexts and situations. A system with these specifications could bring to the development of point-of-care tests, reducing time and cost of an analysis. The design and hardware/software development of the new version of this device, the Q4, came after the study of the previous one. The following thesis work is divided into five main chapters: • Chapter 1: PCR and Real-Time PCR techniques are here described. Their principles, main elements, structures, advantages and applications are well illustrated. At the end of the chapter, two possible different applications are described. The first one concerns Ebolavirus viral detection, the second one is a pharmacogenomic application, related to the metabolism of a post-ACS drug called Clopidogrel. • Chapter 2: in this part the Q3 Plus device developed by STMicroelectronics is described. Its main parts, whose knowledge is fundamental for the development of the new version, are analysed. The realized project choices must be compatible with the existent hardware. • Chapter 3: in this chapter the main design choices regarding the development of the Q4 are described. The implemented solutions related to user interface and portability elements are especially illustrated. All the used components and the hardware development phases leading to the realization of the PDCU (Power and Display Control Unit) are described. This is the new electronic board designed to be the main part of the Q4, hosting all its new elements. At the end of the chapter the final prototype is showed. • Chapter 4: in this section the firmware developed for the implementation of all the features of the Q4 is illustrated. The firmware is divided into two different parts: bootloader and application. The first one is generic and its main purpose is to load and start the desired test. In this part the two developed applications, Ebolavirus Assay and Clopidogrel Metabolism Assay, are described. • Chapter 5: after the production of the first Q4 prototype, some of its elements have been characterized. Some real biomolecular tests have been executed with the Q4, using the developed applications. This made possible validating the correct operation of the whole system. In conclusion some final considerations regarding the realized work are presented, together with some possible future developments.
A partire dalla sua ideazione nel 1983, la Polymerase Chain Reaction si è presto diffusa ed affermata come una tecnica di fondamentale importanza all’interno di qualsiasi laboratorio di biologia molecolare. Essa permette di ottenere rapidamente ed in vitro una quantità molto superiore a quella di partenza di una certa sequenza di DNA, che risulta amplificata alla fine del processo. Il verificarsi o meno dell’amplificazione può anche essere sfruttato come metodo di rivelazione della presenza o assenza della sequenza d’interesse all’interno del campione biologico considerato. La diffusione della tecnica ha consentito lo sviluppo di nuove metodologie di analisi biomolecolare all’interno di un grande numero di contesti differenti. L’amplificazione avviene grazie alla presenza di determinati reagenti, tra cui due primer, ovvero brevi sequenze genetiche che identificano inizio e fine del segmento target della reazione, l’enzima DNA polimerasi e la presenza di nucleotidi liberi in soluzione. Elemento fondamentale della tecnica è la ciclatura termica a cui il campione deve essere sottoposto affinché l’intero processo abbia luogo. Nell’evoluzione della PCR, la Real-Time PCR, l’amplificazione viene osservata in tempo reale, grazie all’utilizzo di tecniche di marcatura in fluorescenza e di rivelazione ottica. L’intensità di fluorescenza che viene misurata al termine di ogni ciclo risulta proporzionale alla quantità di DNA effettivamente amplificato. Le informazioni ottenute consentono anche di fare delle valutazioni di tipo quantitativo sul campione, grazie ad un’opportuna calibrazione. Tra le caratteristiche che hanno consentito una così importante diffusione della PCR si trovano il breve tempo necessario per ottenere il risultato desiderato, le possibilità di automatizzazione e l’elevate sensibilità e specificità rispetto alla sequenza target selezionata. Attualmente la tecnica di Real-Time PCR viene eseguita con l’utilizzo di complessa, voluminosa e costosa strumentazione da laboratorio, grazie all’uso di termociclatori. Da alcuni anni l’azienda di semiconduttori STMicroelectronics ha avviato un’attività di ricerca al fine di sviluppare un dispositivo compatto e portatile, in grado di effettuare analisi di Real-Time PCR con un approccio integrato. L’ultima versione di tale dispositivo è rappresentata dal Q3 Plus, la cui realizzazione è stata possibile grazie al grande sviluppo della tecnologia MEMS (Micro Electro-Mechanical Systems) e dei Lab-on-a-chip. Il sistema è composto da tre elementi fondamentali: una parte di controllo termico, una di rivelazione ottica e una cartuccia usa e getta in cui caricare il campione e dove avviene la reazione di polimerizzazione. Il Q3 Plus è un dispositivo versatile che presenta prestazioni equiparabili a quelle di un termociclatore standard, tuttavia presenta alcune problematiche che ne condizionano l’utilizzo. Le principali riguardano la necessità di un PC con il relativo software per poter funzionare e il bisogno di costante alimentazione elettrica a rete. Lo scopo del presente lavoro di tesi è quello di progettare, sviluppare e realizzare la nuova versione di questo sistema, con l’obiettivo di superare i limiti attuali. In particolare le specifiche richieste al nuovo dispositivo sono: • Presenza di un’interfaccia utente integrata che renda possibile la conduzione di un test senza appoggiarsi ad un PC. • Capacità di effettuare un certo numero di analisi senza dipendere dall’alimentazione a rete. • Presenza di un sistema che consenta l’esecuzione di un numero potenzialmente elevato di test diversi, non vincolato a configurazioni di fabbrica. • Disponibilità immediata dei risultati del test per poter effettuare successive importazioni ed elaborazioni al PC. Previsione in tal senso del maggior numero possibile di elementi di portabilità. • Realizzazione di un’interfaccia utente semplice, adatta all’utilizzo da parte di personale non specializzato. Un dispositivo che presenti le caratteristiche descritte permetterebbe lo svolgimento di analisi biomolecolari di Real-Time PCR in luoghi, situazioni e contesti finora inesplorati. Un tale sistema consentirebbe inoltre lo sviluppo di test al point-of-care, riducendo tempi e costi di analisi. Allo studio della versione precedente del dispositivo sono seguiti la progettazione, lo sviluppo hardware e software e la realizzazione del nuovo sistema: il Q4. Il presente lavoro di tesi è articolato attraverso cinque capitoli principali: • Capitolo 1: vengono qui descritte le tecniche di PCR e Real-Time PCR, i principi su cui si basano, gli elementi necessari, la struttura, i vantaggi e gli utilizzi. Al termine del capitolo vengono presentate due possibili applicazioni della tecnica. Una è di diagnosi virale dell’Ebolavirus e una di farmacogenomica, relativa al metabolismo del Clopidogrel, un farmaco usato per terapie post-infarto. • Capitolo 2: in questa sezione viene descritto il dispositivo Q3 Plus progettato da STMicroelectronics. Di esso vengono analizzate le parti che lo compongono, il cui studio è stato necessario al fine di svilupparne la nuova versione. Le scelte di progetto compiute dovranno infatti risultare coerenti e compatibili con l’hardware presente. • Capitolo 3: in questo capitolo vengono descritte le scelte di progetto compiute per lo sviluppo del Q4 e per il raggiungimento delle specifiche richieste. In particolare vengono illustrate le soluzioni implementate per la realizzazione dell’interfaccia utente e l’aggiunta degli elementi di portabilità. Vengono descritti i componenti utilizzati e le fasi dello sviluppo hardware della PDCU (Power and Display Control Unit), la scheda elettronica al centro del Q4 che ospita gli elementi selezionati. Al termine del capitolo viene mostrato il prototipo finale del dispositivo. • Capitolo 4: viene qui descritto il firmware che è stato sviluppato per il funzionamento del Q4 e per l’implementazione di tutte le caratteristiche previste. Si trova qui illustrata la divisione del firmware in bootloader e applicazione. Il primo è generico e ha lo scopo di caricare e lanciare lo specifico test che si desidera eseguire. Vengono qui descritte anche le due applicazioni sviluppate: Ebolavirus Assay e Clopidogrel Metabolism Assay. • Capitolo 5: a seguito della realizzazione del Q4, è stato possibile caratterizzarne alcuni elementi ed eseguire dei test biomolecolari reali, utilizzando le applicazioni implementate. Ciò ha permesso di validare il funzionamento del sistema. In conclusione sono presenti alcune considerazioni finali sul lavoro svolto e su possibili sviluppi futuri.
Progettazione, sviluppo e realizzazione di un sistema portatile per analisi biomolecolari basato su Lab-on-a-chip
BRUNO, LORENZO
2014/2015
Abstract
Starting from its development in 1983, the Polymerase Chain Reaction technology began to establish itself as an essential technique for every biomolecular laboratory worldwide. The PCR is used to quickly obtain an amplification of a target DNA sequence in vitro. The information related to the amplification event can also be used as a detection method to check if the interested sequence is present or not in the evaluated biological sample. The spread of PCR technology has led to the development of many biomolecular analysis methods, used in plenty of different contexts. The amplification is possible thanks to the presence of specific reagents: two primers, particular DNA sequences that identify the beginning and the end of the target molecule, DNA polymerase enzyme and nucleotides, free in the solution. Thermal cycling is another fundamental element, necessary to succeed in the amplification. Real-Time PCR is the evolution of PCR. In this version of the technique the entire process is observed in real-time, thanks to the use of fluorescent labelling and optical detection technologies. The fluorescence amount detected at the end of every PCR cycle is proportional to the quantity of actually amplified DNA. Related data also allow making quantitative evaluations on the sample. The PCR technique gradually spread worldwide thanks to some important features. First with PCR it’s possible to obtain the desired result in a pretty short time and with a highly automated process. The technology also presents high levels of sensitivity and specificity. Nowadays PCR is executed with thermal cyclers, a complex, voluminous and expensive laboratory apparatus. Some years ago semiconductor manufacturer STMicroelectronics started a research activity to develop a compact, portable device, capable to execute Real-Time PCR analysis with an integrated approach. The Q3 Plus is the last developed version of this device. Its production has been possible thanks to the development of different technologies, such as MEMS (Micro Electro-Mechanical Systems) and Lab-on-a-chip. This system is made of three fundamental elements: the first one is related to the thermal control of the device, the second one to the optical detection and lastly there is a disposable cartridge. This chip is the part of the system where the user has to load the biological sample and where the polymerization reaction takes place. The Q3 Plus is a versatile device and it offers performance that are comparable to a standard thermal cycler. However it shows some limitations that influence its conditions of use. The main ones concern the necessity of a PC with its relative software and of constant connection to the power supply system, in order to operate. This work aims to design, develop and product the new version of this system. The goal is to overcome the observed limitations. The specifications required for this new device are the following: • Presence of an integrated user interface to allow the execution of a test without relying on a PC. • Capability of conducting a certain number of analyses without connecting to the power supply system. • Presence of a system that allows the execution of a large number of different tests, without limiting the device to its factory configuration. • Immediate availability of a test’s results and data, giving the opportunity of importing them on a PC for further processing. It is required to provide the largest number of elements relative to an enhanced portability of the device. • The user interface must be as clear as possible, designed to be appropriate for un-specialized users. An instrument developed following the given specification, could lead to the execution of biomolecular Real-Time PCR analysis in unexplored places, contexts and situations. A system with these specifications could bring to the development of point-of-care tests, reducing time and cost of an analysis. The design and hardware/software development of the new version of this device, the Q4, came after the study of the previous one. The following thesis work is divided into five main chapters: • Chapter 1: PCR and Real-Time PCR techniques are here described. Their principles, main elements, structures, advantages and applications are well illustrated. At the end of the chapter, two possible different applications are described. The first one concerns Ebolavirus viral detection, the second one is a pharmacogenomic application, related to the metabolism of a post-ACS drug called Clopidogrel. • Chapter 2: in this part the Q3 Plus device developed by STMicroelectronics is described. Its main parts, whose knowledge is fundamental for the development of the new version, are analysed. The realized project choices must be compatible with the existent hardware. • Chapter 3: in this chapter the main design choices regarding the development of the Q4 are described. The implemented solutions related to user interface and portability elements are especially illustrated. All the used components and the hardware development phases leading to the realization of the PDCU (Power and Display Control Unit) are described. This is the new electronic board designed to be the main part of the Q4, hosting all its new elements. At the end of the chapter the final prototype is showed. • Chapter 4: in this section the firmware developed for the implementation of all the features of the Q4 is illustrated. The firmware is divided into two different parts: bootloader and application. The first one is generic and its main purpose is to load and start the desired test. In this part the two developed applications, Ebolavirus Assay and Clopidogrel Metabolism Assay, are described. • Chapter 5: after the production of the first Q4 prototype, some of its elements have been characterized. Some real biomolecular tests have been executed with the Q4, using the developed applications. This made possible validating the correct operation of the whole system. In conclusion some final considerations regarding the realized work are presented, together with some possible future developments.File | Dimensione | Formato | |
---|---|---|---|
2015_04_Bruno.pdf
solo utenti autorizzati dal 02/04/2018
Descrizione: Testo della tesi
Dimensione
8.06 MB
Formato
Adobe PDF
|
8.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107293