Flash memory is today the leading solid-state non-volatile memory technology, allowing high integration density, low costs and good reliability, with the NAND architecture representing the most cost-effective, cutting-edge solution for data storage applications. The continuous scaling has been the main driver of the success of Flash technology, pushing it, however, to its physical limits: miniaturization of cell dimensions, in fact, has largely increased the impact that single electrons in the gate stack have on device threshold voltage (VT). As a consequence, a plethora of new physical phenomena has emerged in nowadays Flash technologies, driven by the evolution of collective behaviors, with many electrons controlling cell VT, to few-electron statistical behaviors. Among these phenomena, only random telegraph noise (RTN) was intensively studied in the past in a few-electron fashion, whereas charge detrapping from the cell tunnel-oxide and program noise (PN) were addressed as many-electron effects. Revisiting these phenomena in a discrete, statistical fashion, constituting the main target of this dissertation, is then a fundamental step towards a full understanding of the operation of modern decananometer Flash devices and the realization of the ultimate single-electron memory. Few-electron phenomena, furthermore, represent a severe reliability issue for the latest Flash technologies, and the full quantitative assessment of the associated VT instabilities carried out in this work represents a path forward to the development of accelerated testing schemes, aiming at reproducing the real on-field behavior of the memory device.
Le memorie Flash rappresentano al giorno d'oggi la principale tecnologia di memoria non volatile a stato solido, permettendo un'elevata densità di integrazione, costi contenuti e buone prestazioni in termini di affidabilità. L'architettura NAND rappresenta la soluzione più economicamente efficiente e all'avanguardia per il data storage. Il continuo scaling è stato la base del successo della tecnologia Flash, portandola tuttavia a scontrarsi con limitazioni di natura fondamentale: la miniaturizzazione della cella, infatti, ha accresciuto in maniera significativa l'impatto che singoli elettroni presenti nello stack di gate hanno sulla tensione di soglia (VT). Ciò ha portato alla luce una moltitudine di nuovi fenomeni fisici basati su meccanismi statistici regolati da pochi elettroni. Tra questi fenomeni, l'unico a essere già stato studiato in maniera esaustiva in un'ottica a pochi elettroni è il random telegraph noise (RTN), mentre era ancora assente una simile descrizione per il detrapping di carica dall'ossido di tunnel e per il program noise (PN), che rappresentano l'oggetto del presente lavoro di tesi; una rivisitazione di tali fenomeni da un punto di vista discreto/statistico rappresenta un passo in avanti verso una comprensione più completa degli odierni dispositivi Flash decananometrici. I fenomeni a pochi elettroni, inoltre, costituiscono un serio problema di affidabilità per le tecnologie Flash di nuova generazione, e la valutazione quantitativa delle instabilità di soglia da essi indotte si rivela necessaria per lo sviluppo di schemi di test accelerati, che permettano di riprodurre in tempi brevi l'utilizzo sul campo del dispositivo di memoria.
Impact of few-electron phenomena on the operation and reliability of nanoscale Flash memories
PAOLUCCI, GIOVANNI MARIA
Abstract
Flash memory is today the leading solid-state non-volatile memory technology, allowing high integration density, low costs and good reliability, with the NAND architecture representing the most cost-effective, cutting-edge solution for data storage applications. The continuous scaling has been the main driver of the success of Flash technology, pushing it, however, to its physical limits: miniaturization of cell dimensions, in fact, has largely increased the impact that single electrons in the gate stack have on device threshold voltage (VT). As a consequence, a plethora of new physical phenomena has emerged in nowadays Flash technologies, driven by the evolution of collective behaviors, with many electrons controlling cell VT, to few-electron statistical behaviors. Among these phenomena, only random telegraph noise (RTN) was intensively studied in the past in a few-electron fashion, whereas charge detrapping from the cell tunnel-oxide and program noise (PN) were addressed as many-electron effects. Revisiting these phenomena in a discrete, statistical fashion, constituting the main target of this dissertation, is then a fundamental step towards a full understanding of the operation of modern decananometer Flash devices and the realization of the ultimate single-electron memory. Few-electron phenomena, furthermore, represent a severe reliability issue for the latest Flash technologies, and the full quantitative assessment of the associated VT instabilities carried out in this work represents a path forward to the development of accelerated testing schemes, aiming at reproducing the real on-field behavior of the memory device.File | Dimensione | Formato | |
---|---|---|---|
2015_03_PhD_Paolucci.pdf
non accessibile
Descrizione: Thesis text
Dimensione
3.07 MB
Formato
Adobe PDF
|
3.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107303