Elastic solids with strain-limiting response to external loading represent an interesting class of material models, capable of describing stress concentration at strains with small magnitude. A theoretical justification of this class of models comes naturally from implicit constitutive theory. Focusing on the spatially periodic setting, we studied a numerical algorithm for the approximate solution of a nonlinear elastic limiting strain model based on the Fourier spectral method which was proposed in [BMS14]. Assuming that the weak solution to the boundary-value problem possesses suitable Sobolev regularity, the sequence of numerical solutions is shown to converge to the weak solution of the problem at an optimal rate. The numerical method represents a finite-dimensional system of nonlinear equations. Two iterative methods are proposed for the approximate solution of this system equations: we prove that the solution to the linearized system (which we need to solve at each iteration) exists and is unique in both cases and that the second iterative algorithm converges to the unique solution of the numerical method. Some numerical simulations are reported to put all the theoretical results into practice.
I solidi elastici che rispondono con una deformazione limitata ad un carico esterno rappresentano una classe interessante di modelli costitutivi impliciti, capaci di descrivere la concentrazione dello sforzo in corrispondenza di deformazioni infinitesime. Concentrandoci sul caso di condizioni al bordo periodiche in spazio, abbiamo studiato un algoritmo numerico per l’approssimazione della soluzione di un modello elastico non lineare a deformazione limitata: tale metodo spettrale di Fourier è stato proposto da M. Bulíček, J. Málek and E. Süli in [BMS14]. Ipotizzando che la soluzione debole del problema al bordo abbia una regolarità opportuna, proviamo che la successione delle soluzioni numeriche converge alla soluzione debole del problema con ordine di convergenza ottimale. Il metodo numerico si traduce in un sistema finito-dimensionale di equazioni non lineari. Due metodi iterativi vengono proposti per l’approssimazione della soluzione di tale sistema: proviamo che la soluzione del sistema linearizzato (che dobbiamo risolvere ad ogni iterazione) esiste ed è unica in entrambi i casi e che il secondo algoritmo iterativo converge all’unica soluzione del metodo numerico. Inoltre riportiamo alcune simulazioni numeriche per mettere in pratica tutti i risultati teorici dimostrati.
Spectral approximation and simulations of a strain-limiting nonlinear elastic model
GELMETTI, NICOLÒ
2014/2015
Abstract
Elastic solids with strain-limiting response to external loading represent an interesting class of material models, capable of describing stress concentration at strains with small magnitude. A theoretical justification of this class of models comes naturally from implicit constitutive theory. Focusing on the spatially periodic setting, we studied a numerical algorithm for the approximate solution of a nonlinear elastic limiting strain model based on the Fourier spectral method which was proposed in [BMS14]. Assuming that the weak solution to the boundary-value problem possesses suitable Sobolev regularity, the sequence of numerical solutions is shown to converge to the weak solution of the problem at an optimal rate. The numerical method represents a finite-dimensional system of nonlinear equations. Two iterative methods are proposed for the approximate solution of this system equations: we prove that the solution to the linearized system (which we need to solve at each iteration) exists and is unique in both cases and that the second iterative algorithm converges to the unique solution of the numerical method. Some numerical simulations are reported to put all the theoretical results into practice.File | Dimensione | Formato | |
---|---|---|---|
2015_04_Gelmetti.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
4.01 MB
Formato
Adobe PDF
|
4.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107323