NET Power has developed a novel thermodynamic cycles using supercritical CO2 as working fluid in a intercooled regenerative cycle, which is clamed to reach a net electric efficiency of 59 % (LHV based). This would be competitive with traditional plants without carbon capture using smaller and fewer component and obtaining almost zero ambient emissions. On the other hand some of the components appear challenging from a technological point of view, especially the high pressure high temperature turbine and the multi-flow regenerator which has large pressure differences, high temperature and considerable heat transfer area. This cycle and other oxy-fuel solutions have been recently reviewed by Foster Wheeler and Politecnico di Milano on behalf of IEA GHG R&D programme. Starting from their results, this work analyzes the thermodynamic characteristics of the NET Power cycle completing the analysis of FW and Politecnico di Milano. First, a detailed sensitivity analysis to assess the effects of the key cycle parameters on the cycle efficiency is performed. Particular attention has been given to the effects of the combustor outlet temperature because of the peculiar net electric efficiency trend. It has been found that there exists an optimal value of combustor outlet temperature of about 1150 °C and that this is due to the fact that the turbine cooling flow is preheated within the regenerator. Then, using an optimization algorithm, the cycle variables corresponding to the maximum efficiency have been determined. It was found that the optimal cycle design does not differ substantially from that analyzed by FW and Politecnico di Milano. The same optimization approach has been used to determine cycle designs with reduced cost and stress of the regenerator, most critical component. The cycle optimization has been repeated imposing a limited maximum temperature and/or pressure and increased pinch-point temperature differences of the regenerator. The analysis allowed to determine a cycle design with close-to maximum efficiency and lower costs. Finally, a solution with conventional heat exchangers in order to replace the multi-flow regenerator, has been derived and presented.
NET Power ha sviluppato una nuova soluzione che utilizza CO2 supercritica come fluido di lavoro in un ciclo inter-refrigerato e rigenerativo, dichiarando di raggiungere un rendimento elettrico netto del 59 % (riferito al PCI). Questo risulterebbe competitivo con un impianto senza cattura della CO2 con meno componenti e di dimensioni inferiori e ottenendo quasi zero emissioni ambientali. D’altra parte alcuni dei componenti necessari richiedono studi tecnologici piuttosto onerosi, specialmente l’espansore e il rigeneratore multi-flusso. Questo ciclo e altre soluzioni ad ossi-combustione sono state esaminate da Foster Wheeler e Politecnico di Milano per conto del programma IEA GHG R&D. A partire dai loro risultati, questo lavoro analizza le caratteristiche termodinamiche del ciclo NET. Innanzitutto, è stata eseguita un’analisi di sensitività dettagliata riguardante gli effetti sull’efficienza del ciclo provocati dai suoi parametri principali. Particolare attenzione è stata data alla temperatura di scarico del combustore a causa del particolare andamento dell’efficienza elettrica netta. Si è osservato che esiste una temperatura ottima di scarico del combustore attorno ai 1150 °C a causa del fatto che il flusso di raffreddamento della turbina viene preriscaldato nel rigeneratore. In seguito, utilizzando un algoritmo di ottimizzazione, sono state determinate le varabili del ciclo che ne massimizzano l’efficienza. Si è notato che il design ottimo del ciclo non si distingue in maniera significativa da quello analizzato da FW e Politecnico di Milano. Lo stesso approccio di ottimizzazione è stato utilizzato per determinare le configurazioni del ciclo che utilizzano un rigenerator con costi minori e sottoposto a sforzi inferiori. L’ottimizzazione del ciclo è stata ripetuta imponendo un limite massimo sulla temperatura e/o sulla pressione e aumentando la differenza di temperatura al pinch-point del rigeneratore. L’analisi ha permesso di determinare una configurazione del ciclo con efficienza prossima al valore massimo e costi inferiori. Infine, è stata ricavata una soluzione con scambiatori di calore convenzionali in grado di sostituire il rigeneratore multi-flusso.
Thermodynamic analysis and numerical optimization of the NET power oxycombustion cycle
SCACCABAROZZI, ROBERTO
2013/2014
Abstract
NET Power has developed a novel thermodynamic cycles using supercritical CO2 as working fluid in a intercooled regenerative cycle, which is clamed to reach a net electric efficiency of 59 % (LHV based). This would be competitive with traditional plants without carbon capture using smaller and fewer component and obtaining almost zero ambient emissions. On the other hand some of the components appear challenging from a technological point of view, especially the high pressure high temperature turbine and the multi-flow regenerator which has large pressure differences, high temperature and considerable heat transfer area. This cycle and other oxy-fuel solutions have been recently reviewed by Foster Wheeler and Politecnico di Milano on behalf of IEA GHG R&D programme. Starting from their results, this work analyzes the thermodynamic characteristics of the NET Power cycle completing the analysis of FW and Politecnico di Milano. First, a detailed sensitivity analysis to assess the effects of the key cycle parameters on the cycle efficiency is performed. Particular attention has been given to the effects of the combustor outlet temperature because of the peculiar net electric efficiency trend. It has been found that there exists an optimal value of combustor outlet temperature of about 1150 °C and that this is due to the fact that the turbine cooling flow is preheated within the regenerator. Then, using an optimization algorithm, the cycle variables corresponding to the maximum efficiency have been determined. It was found that the optimal cycle design does not differ substantially from that analyzed by FW and Politecnico di Milano. The same optimization approach has been used to determine cycle designs with reduced cost and stress of the regenerator, most critical component. The cycle optimization has been repeated imposing a limited maximum temperature and/or pressure and increased pinch-point temperature differences of the regenerator. The analysis allowed to determine a cycle design with close-to maximum efficiency and lower costs. Finally, a solution with conventional heat exchangers in order to replace the multi-flow regenerator, has been derived and presented.File | Dimensione | Formato | |
---|---|---|---|
2015_04_Scaccabarozzi.pdf
Open Access dal 09/04/2018
Descrizione: Testo della tesi
Dimensione
3.35 MB
Formato
Adobe PDF
|
3.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107829