The application of conventional internal insulation systems, based on additional vapor retarding layers with variable diffusion resistance, often leads (especially when it’s not perfectly realized) to the attainment of a too high moisture content behind the insulation. In order to avoid this situation, which increases the risk of serious damage to the building, the use of the so called capillary active interior insulation systems can be advantageous. Such systems utilize the material’s ability to transport liquid water under non isothermal conditions against the water vapor diffusion flux naturally limiting the moisture content inside the construction. The serviceability of the system and prevention from damage is ideally assessed beforehand via simulation. For this reason it is really important to determine the specific liquid transport characteristics of the materials. Of particular importance here is the liquid water conductivity K. In this work are presented two innovative experimental approaches for the determination of this property: one with isothermal and the other one with non isothermal boundary conditions. The first experiment is based on the drying of material samples in an environment with controlled constant temperature and relative humidity. During the test the weight of the specimens and the surface temperature are constantly monitored. The second method is performed by employing a guarded hot plate apparatus. A temperature gradient is applied over the material samples and the consequent heat flux through the specimens is measured. The procedure is repeated using specimens characterized by different moisture contents. Both these procedures present the advantage of requiring reduced measuring instrumentation. In the first method described, for the final determination of K, numerical simulation is needed. An inverse approach employing numerical simulation is presented. The software Comsol Multiphysics and Matlab are employed as simulation tools. A previous experimental characterization of the material is needed in order to obtain all the other properties involved in the mathematical model for combined heat and moisture transfer used to calculate K. In the first part of the thesis the mathematical model is described (Chapter 2). In the following the experimental procedures performed (Chapter 3) and then (Chapter 4) the results obtained are presented. All the data obtained are also useful for a validation of the mathematical model for combined heat and moisture transfer used (Chapter 4). Finally are presented the conclusions and some suggestions regarding the main issues which have to be investigated to further develop and improve the second method presented for the determination of the liquid water conductivity (Chapter 5).
L'applicazione dei sistemi di isolamento interni convenzionali, specialmente quando non viene realizzata in maniera precisa, può spesso portare ad un contenuto di umidità dietro lo strato di isolante troppo elevato. Per evitare questa situazione, che può causare gravi danni per la costruzione, l'uso dei cosiddetti sistemi di isolamento interno capillari attivi può essere vantaggioso. Tali sistemi utilizzano la capacità del materiale di trasportare acqua liquida in condizioni non isoterme in direzione opposta al flusso di diffusione del vapore in modo da limitare naturalmente il contenuto di umidità all'interno della costruzione. La manutenzione del sistema e la prevenzione dai danni è valutata in fase di progettazione tramite simulazione. Per questo motivo è molto importante determinare le caratteristiche specifiche del materiale concernenti il trasporto di acqua allo stato liquido. Di particolare importanza è il coefficiente di conducibilità per il trasporto di acqua liquida K. In questo lavoro vengono presentati due approcci sperimentali innovativi per la determinazione di questa proprietà: uno funzionante in condizioni isoterme e l'altro in condizioni non isoterme. Il primo esperimento si basa sull’ essiccamento di alcuni provini in un ambiente con temperatura e umidità relativa controllate e mantenute costanti. Durante la prova il peso dei campioni e la loro temperatura superficiale vengono monitorati costantemente. Il secondo metodo viene eseguito impiegando un apparecchio termo flussimetro a piastra calda di quelli usati per la misura della conducibilità termica. Tramite questa apparecchiatura viene applicato un gradiente di temperatura fra le due facce del materiale misurando il conseguente flusso di calore attraverso i campioni. La procedura viene ripetuta usando campioni caratterizzati da differenti contenuti di umidità. Entrambe queste procedure presentano il vantaggio di richiedere una strumentazione di misura ridotta. Nel primo metodo, per la determinazione finale di K, è necessario avvalersi della simulazione numerica per risolvere un problema di tipo inverso. Il software Comsol Multiphysics e MATLAB sono impiegati come strumenti di simulazione. Una caratterizzazione sperimentale del materiale è necessaria al fine di ottenere tutte le altre proprietà coinvolte nel modello matematico per trasporto combinato di calore e umidità utilizzato per calcolare K. Nella prima parte della tesi viene descritto il modello matematico (Capitolo 2). Nel seguito vengono presentate prima tutte le procedure sperimentali eseguite (Capitolo 3) e poi i risultati (capitolo 4) ottenuti . Tutti i dati ottenuti sono utili anche per una verifica della validità del modello matematico per il trasporto combinato di calore e umidità utilizzato (capitolo 4). Infine vengono presentate le conclusioni e alcuni suggerimenti per quanto riguarda le questioni principali da investigare per sviluppare e migliorare il secondo metodo descritto (capitolo 5).
Innovative approaches for the experimental determination of the liquid water conductivity and validation of a model for heat and moisture transfer in porous building components
PASSANITI, RENATO
2013/2014
Abstract
The application of conventional internal insulation systems, based on additional vapor retarding layers with variable diffusion resistance, often leads (especially when it’s not perfectly realized) to the attainment of a too high moisture content behind the insulation. In order to avoid this situation, which increases the risk of serious damage to the building, the use of the so called capillary active interior insulation systems can be advantageous. Such systems utilize the material’s ability to transport liquid water under non isothermal conditions against the water vapor diffusion flux naturally limiting the moisture content inside the construction. The serviceability of the system and prevention from damage is ideally assessed beforehand via simulation. For this reason it is really important to determine the specific liquid transport characteristics of the materials. Of particular importance here is the liquid water conductivity K. In this work are presented two innovative experimental approaches for the determination of this property: one with isothermal and the other one with non isothermal boundary conditions. The first experiment is based on the drying of material samples in an environment with controlled constant temperature and relative humidity. During the test the weight of the specimens and the surface temperature are constantly monitored. The second method is performed by employing a guarded hot plate apparatus. A temperature gradient is applied over the material samples and the consequent heat flux through the specimens is measured. The procedure is repeated using specimens characterized by different moisture contents. Both these procedures present the advantage of requiring reduced measuring instrumentation. In the first method described, for the final determination of K, numerical simulation is needed. An inverse approach employing numerical simulation is presented. The software Comsol Multiphysics and Matlab are employed as simulation tools. A previous experimental characterization of the material is needed in order to obtain all the other properties involved in the mathematical model for combined heat and moisture transfer used to calculate K. In the first part of the thesis the mathematical model is described (Chapter 2). In the following the experimental procedures performed (Chapter 3) and then (Chapter 4) the results obtained are presented. All the data obtained are also useful for a validation of the mathematical model for combined heat and moisture transfer used (Chapter 4). Finally are presented the conclusions and some suggestions regarding the main issues which have to be investigated to further develop and improve the second method presented for the determination of the liquid water conductivity (Chapter 5).File | Dimensione | Formato | |
---|---|---|---|
RENATO PASSANITI 800749.pdf
accessibile in internet per tutti
Descrizione: Innovative approaches for the experimental determination of the liquid water conductivity and validation of a model for heat and moisture transfer in porous building components
Dimensione
3.48 MB
Formato
Adobe PDF
|
3.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107842