The aim of this Master Thesis is to apply Computational Fluid Dynamics (CFD) for modeling the flow around a Savonius-type vertical axis wind turbine (VAWT), in order to gain an insight into the complex flow patterns developing around it and to evaluate its performance. Two rotors with different aspect ratios are investigated. Numerical results of two- and three-dimensional simulations have been compared with the experimental investigations performed by Hayashi et al. [10] and Blackwell et al. [4]. Simulations were carried out by the open-source CFD code OpenFOAM, adopting the dynamic and incompressible solver pimpleDyMFoam. As expected, three-dimensional results are in very good agreement with experimental data, while overestimation of the rotor performance is observed in two-dimensional simulations. The transient forces acting on rotor blades, the torque and power generation, the longitudinal drag and lateral lift coefficients have been evaluated. Results demonstrate that the contribution of the force in the lateral direction accounts for a significant part of the forces generated throughout one revolution. The influence of blade overlap on rotor performance has also been studied, indicating a more marked effect at low tip speed ratio values. Finally, velocity, pressure and vorticity fields around the rotor blades are shown. A bent in the downstream flow is observed, making possible to produce extra power combining multiple turbines in the horizontal plane.
Questo lavoro di tesi propone un metodo per la descrizione del flusso intorno ad una turbina eolica di tipo Savonius mediante l’utilizzo di un codice di calcolo open-source. L’obiettivo è quello di comprendere ed analizzare i complessi flussi che si sviluppano intorno a questa particolare macchina ad asse verticale e di valutarne le prestazioni aerodinamiche. Sono studiati due rotori di diverse dimensioni. I risultati numerici delle simulazioni bidimensionali e tridimensionali sono confrontati con gli esiti degli esperimenti effettuati da Hayashi et al. [10] e Blackwell et al. [4]. Il solutore dinamico incomprimibile pimpleDyMFoam, disponibile nella distribuzione ufficiale del codice OpenFOAM, è stato adottato per l’esecuzione delle simulazioni. Come prevedibile, i risultati della modellizzazione tridimensionale sono in ottimo accordo con i dati sperimentali disponibili, mentre l’utilizzo di modelli bidimensionali porta a significative sovrastime delle prestazioni della turbina. Le forze agenti sulle pale del rotore, le coppie e le potenze prodotte, i coefficienti aerodinamici di drag e di lift sono stati analizzati: i risultati mostrano che le forze laterali contribuiscono notevolmente alle forze totali generate nel corso di una rotazione e che l’overlap delle pale ha una più marcata incidenza sulle prestazioni della turbina a basse velocità di rotazione. Le analisi dei campi di velocità, pressione e vorticità rivelano infine una deviazione del flusso a valle del rotore, mostrando come sia possibile produrre ulteriore potenza mediante la combinazione di più turbine sullo stesso piano.
Multi-dimensional simulation of a Savonius vertical axis wind turbine with OpenFOAM
BRAVIN, LEONARDO
2013/2014
Abstract
The aim of this Master Thesis is to apply Computational Fluid Dynamics (CFD) for modeling the flow around a Savonius-type vertical axis wind turbine (VAWT), in order to gain an insight into the complex flow patterns developing around it and to evaluate its performance. Two rotors with different aspect ratios are investigated. Numerical results of two- and three-dimensional simulations have been compared with the experimental investigations performed by Hayashi et al. [10] and Blackwell et al. [4]. Simulations were carried out by the open-source CFD code OpenFOAM, adopting the dynamic and incompressible solver pimpleDyMFoam. As expected, three-dimensional results are in very good agreement with experimental data, while overestimation of the rotor performance is observed in two-dimensional simulations. The transient forces acting on rotor blades, the torque and power generation, the longitudinal drag and lateral lift coefficients have been evaluated. Results demonstrate that the contribution of the force in the lateral direction accounts for a significant part of the forces generated throughout one revolution. The influence of blade overlap on rotor performance has also been studied, indicating a more marked effect at low tip speed ratio values. Finally, velocity, pressure and vorticity fields around the rotor blades are shown. A bent in the downstream flow is observed, making possible to produce extra power combining multiple turbines in the horizontal plane.| File | Dimensione | Formato | |
|---|---|---|---|
|
2015_04_Bravin.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
10.56 MB
Formato
Adobe PDF
|
10.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107981