The present thesis project started in the laboratory of Biomaterial of Politecnico di Milano, where thin films of polymeric biomaterials were synthesized, such as polycarbonate urethane, polyether urethane and SIBS. Polyurethanes are widely used in the biomedical field to realize implantable devices. In fact, their properties can vary depending on their composition, which in turn depends on the nature of the reagents and their relative abundancy. Among the four polyurethanes considered, three are commercially available and currently exploited for biomedical purposes, while the fourth is an innovative polyurethane, designed and synthesized in a previous thesis project carried out in Politecnico di Milano. Instead, also the SIBS used is commercially available. In general, SIBS were introduced in the biomedical field as possible substitutes of polyurethanes, since they have superior stability and they do not incur into hydrolytic, oxidative or enzymatic degradation. Of the thin polymeric films produced, the superficial roughness and wettability were measured in order to characterize the interface on which the successive experimentations would have been performed. The second phase of the experimental work was then conducted in the bacteria laboratory of Politecnico di Milano, where bacterial adhesion was carried out on the polymeric materials. Namely, samples of adequate size to be inserted ino multi-well plates were obtained from the thin polymeric films. These samples were covered with Escherichia Coli or Staphylococcus Aureus bacterial suspensions in culture medium and inserted in an incubator for 24 or 72 hours at 37°C. Subsequently, the samples were treated to make possible the visualization of adhered bacteria on their surface through microscopy techniques. In particular, it was necessary to fix and make the bacteria fluorescent to observe them with fluorescence microscopy, while for the inspection with scanning electron microscopy (SEM) the samples were fixed and dehydrated. The tests described up to this point were named “bacterial adhesion tests in static conditions”, because the bacterial suspension stood still on the samples. These tests constituted the most consistent part of the experimental activity, since they were repeated several times in order to learn, optimize and standardize the working procedures and conditions. For example, the bacterial concentration at time zero, the liquid medium in which to suspend them, the samples processing after the adhesion tests and even the criteria of inspection with microscopy techniques. Concerning the evaluation of the level of bacterial adhesion on polymeric samples, colorimetric assays yielding a numeric index proportional to the number of adhered bacteria were not exploited, since the number of cells adhered on the samples was not sufficiently high. For example, the colorimetric assay with resazurin was not sensitive enough and therefore adequate for this evaluation. For this reason, only microscopy techniques were used, with the awareness of their limits. In fact, considering the number of samples tested (several materials tested each one in triplicate and in different conditions) and the time of inspection required from one sample, microscopy techniques imply lot of time and effort for this purpose. In addition, with a microscope it’s possible to vision only a small area of the sample at once, and it’s therefore necessary to inspect the whole sample before taking one or more pictures. The photo must then be representative of a significant area, where the number of adhered bacteria is intermediate between areas with low and high levels of adhesion. Hence, this method implies a subjective component from the person who is observing the samples. The analysis of the pictures obtained through microscopy was then performed through the software ImageJ, which enables to count automatically the particles whose color is different than the one of their background, or also a manual counting whether the number of bacteria was not too high. Subsequently, the experimental activity continued with “bacterial adhesion tests in dynamic conditions”, in which the cellular suspension was forced to flow over the studied materials. The realization of these tests was made possible thanks to a device designed in a previous thesis project of Politecnico di Milano [5], a flow chamber with parallel plates in PMMA produced through numeric control milling. Inside this chamber it is possible to insert samples, over which flows a liquid moved through a peristaltic pump at a fixed flow. Before proceeding with the adhesion tests in dynamic conditions, it was necessary to implement several tests with the flow chamber with parallel plates in order to identify the correct working conditions. Among these, the configuration to avoid leakage of the flowing liquid, the identification of an appropriate gasket and the most suited positioning of the samples inside the chamber. Once found a solution to these problems, a bacterial adhesion test in dynamic conditions was carried out with Escherichia Coli on a single polymeric material.
Il presente lavoro di tesi è iniziato presso il laboratorio di Biomateriali del Politecnico di Milano, dove sono stati sintetizzati dei film sottili di biomateriali polimerici, quali policarbonato uretano, polietere uretano e SIBS (stirene-isobutilene-stirene). I poliuretani sono ampiamente utilizzati in ambito biomedico per realizzare dispositivi anche impiantabili. Difatti, le loro proprietà variano in base alla composizione, la quale dipende a sua volta dalla natura dei reagenti e dalle percentuali relative tra questi. Tra i quattro poliuretani presi in considerazione, tre sono disponibili commercialmente e attualmente impiegati per usi biomedici, mentre il quarto è un poliuretano innovativo, progettato e sintetizzato in un precedente lavoro di tesi del Politecnico di Milano [10]. Invece, per quanto riguarda il SIBS utilizzato, è anch’esso un prodotto commerciale. In generale, i SIBS sono stati introdotti in ambito biomedico come possibili sostituti dei poliuretani, rispetto ai quali possiedono maggiore stabilità e non subiscono degradazione idrolitica, ossidativa od enzimatica. Dei sottili film polimerici prodotti, è stata misurata la rugosità e la bagnabilità superficiale, in modo da caratterizzare l’interfaccia su cui sarebbero state condotte le successive sperimentazioni. La restante parte dell’attività sperimentale si è svolta invece presso il laboratorio di batteri del Politecnico di Milano, dove i materiali polimerici sono stati sottoposti a prove di adesione batterica. Ovvero, dai sottili film polimerici si sono ricavati dei provini delle dimensioni adeguate per essere inseriti in piastre multi-pozzetto. I campioni polimerici sono stati ricoperti con sospensioni batteriche di Escherichia Coli o Staphylococcus Aureus in terreno di coltura e messi in incubatore per 24 o 72 ore a 37°C. Successivamente, i provini sono stati trattati per poter visualizzare i batteri che avevano aderito sulla loro superficie tramite tecniche di microscopia. In particolare, si è reso necessario fissare e conferire fluorescenza ai batteri per poterli vedere al microscopio in fluorescenza, mentre per l’ispezione con il microscopio a scansione elettronica si è dovuto fissare e disidratare i campioni. Le prove fin qui descritte sono state definite “prove di adesione in condizioni statiche”, poiché la sospensione batterica è immobile sui campioni. Queste prove hanno costituito la parte più consistente dell’attività sperimentale, dal momento che sono state ripetute molteplici volte per apprendere, ottimizzare e standardizzare le procedure e le condizioni di lavoro. Ad esempio, la concentrazione dei batteri in sospensione al tempo zero, il mezzo liquido in cui sospenderli, il metodo di stima dei batteri in sospensione, il trattamento dei provini dopo le prove di adesione ed anche i criteri di ispezione con tecniche di microscopia. Per quanto riguarda la valutazione del livello di adesione batterica sui campioni polimerici, non si sono utilizzati saggi colorimetrici che fornissero un indice proporzionale al numero di batteri adesi, poiché il numero delle cellule sui campioni dopo le prove di adesione non era sufficientemente elevato. A tal proposito, il saggio colorimetrico con resazurina non si è rivelato abbastanza sensibile e quindi adatto a tale valutazione. Per questo motivo ci si è basati unicamente su tecniche di microscopia, consapevoli dei limiti ad esse connessi. Infatti, considerato il numero di campioni testati (vari materiali testati ognuno in triplicato e in condizioni diverse) ed il tempo di ispezione di ogni singolo provino, le tecniche di microscopia risultano essere indaginose e laboriose. Inoltre, con un microscopio si immortala solo una piccola area del campione, ed è quindi necessario ispezionare tutto il provino attentamente prima di scattare una o più foto di aree significative, in cui il numero di batteri sia intermedio tra le zone ad alta e a bassa adesione. Tale metodo implica quindi una componente soggettiva a carico di colui che osserva i campioni con i batteri. L’analisi delle foto ottenute per microscopia è stata poi effettuata con il software ImageJ, con il quale è stato possibile contare i batteri adesi mediante un metodo di conta automatico oppure manuale qualora il numero delle cellule non fosse troppo elevato. Successivamente, l’attività sperimentale è proseguita con “prove di adesione batterica in condizioni dinamiche”, ovvero in cui la sospensione di cellule viene fatta scorrere sui materiali considerati. La realizzazione di queste prove è stata resa possibile grazie ad un dispositivo progettato in un precedente lavoro di tesi del Politecnico di Milano [5], una camera a flusso a piatti paralleli in PMMA prodotta con fresatura a controllo numerico. All’interno di questa camera è possibile alloggiare i campioni, su cui viene fatto scorrere del liquido mosso da una pompa roller ad una portata prestabilita. Prima di procedere con le prove di adesione in condizioni dinamiche, si è reso necessario condurre varie prove con la camera a flusso a piatti paralleli per identificare le corrette condizioni di funzionamento. Ovvero, la tenuta del circuito alla fuoriuscita del liquido circolante, l’identificazione della guarnizione adatta e la sistemazione dei campioni all’interno della camera. Trovata una soluzione a questi problemi, si è effettuata una prova di adesione in condizioni dinamiche di Escherichia Coli su un materiale polimerico.
Valutazione dell'adesione batterica in condizioni statiche e dinamiche su biomateriali polimerici
CUSPIDI, GIACOMO
2014/2015
Abstract
The present thesis project started in the laboratory of Biomaterial of Politecnico di Milano, where thin films of polymeric biomaterials were synthesized, such as polycarbonate urethane, polyether urethane and SIBS. Polyurethanes are widely used in the biomedical field to realize implantable devices. In fact, their properties can vary depending on their composition, which in turn depends on the nature of the reagents and their relative abundancy. Among the four polyurethanes considered, three are commercially available and currently exploited for biomedical purposes, while the fourth is an innovative polyurethane, designed and synthesized in a previous thesis project carried out in Politecnico di Milano. Instead, also the SIBS used is commercially available. In general, SIBS were introduced in the biomedical field as possible substitutes of polyurethanes, since they have superior stability and they do not incur into hydrolytic, oxidative or enzymatic degradation. Of the thin polymeric films produced, the superficial roughness and wettability were measured in order to characterize the interface on which the successive experimentations would have been performed. The second phase of the experimental work was then conducted in the bacteria laboratory of Politecnico di Milano, where bacterial adhesion was carried out on the polymeric materials. Namely, samples of adequate size to be inserted ino multi-well plates were obtained from the thin polymeric films. These samples were covered with Escherichia Coli or Staphylococcus Aureus bacterial suspensions in culture medium and inserted in an incubator for 24 or 72 hours at 37°C. Subsequently, the samples were treated to make possible the visualization of adhered bacteria on their surface through microscopy techniques. In particular, it was necessary to fix and make the bacteria fluorescent to observe them with fluorescence microscopy, while for the inspection with scanning electron microscopy (SEM) the samples were fixed and dehydrated. The tests described up to this point were named “bacterial adhesion tests in static conditions”, because the bacterial suspension stood still on the samples. These tests constituted the most consistent part of the experimental activity, since they were repeated several times in order to learn, optimize and standardize the working procedures and conditions. For example, the bacterial concentration at time zero, the liquid medium in which to suspend them, the samples processing after the adhesion tests and even the criteria of inspection with microscopy techniques. Concerning the evaluation of the level of bacterial adhesion on polymeric samples, colorimetric assays yielding a numeric index proportional to the number of adhered bacteria were not exploited, since the number of cells adhered on the samples was not sufficiently high. For example, the colorimetric assay with resazurin was not sensitive enough and therefore adequate for this evaluation. For this reason, only microscopy techniques were used, with the awareness of their limits. In fact, considering the number of samples tested (several materials tested each one in triplicate and in different conditions) and the time of inspection required from one sample, microscopy techniques imply lot of time and effort for this purpose. In addition, with a microscope it’s possible to vision only a small area of the sample at once, and it’s therefore necessary to inspect the whole sample before taking one or more pictures. The photo must then be representative of a significant area, where the number of adhered bacteria is intermediate between areas with low and high levels of adhesion. Hence, this method implies a subjective component from the person who is observing the samples. The analysis of the pictures obtained through microscopy was then performed through the software ImageJ, which enables to count automatically the particles whose color is different than the one of their background, or also a manual counting whether the number of bacteria was not too high. Subsequently, the experimental activity continued with “bacterial adhesion tests in dynamic conditions”, in which the cellular suspension was forced to flow over the studied materials. The realization of these tests was made possible thanks to a device designed in a previous thesis project of Politecnico di Milano [5], a flow chamber with parallel plates in PMMA produced through numeric control milling. Inside this chamber it is possible to insert samples, over which flows a liquid moved through a peristaltic pump at a fixed flow. Before proceeding with the adhesion tests in dynamic conditions, it was necessary to implement several tests with the flow chamber with parallel plates in order to identify the correct working conditions. Among these, the configuration to avoid leakage of the flowing liquid, the identification of an appropriate gasket and the most suited positioning of the samples inside the chamber. Once found a solution to these problems, a bacterial adhesion test in dynamic conditions was carried out with Escherichia Coli on a single polymeric material.File | Dimensione | Formato | |
---|---|---|---|
Tesi_GC.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri |
Appendice ImageJ.docx
non accessibile
Descrizione: Appendice
Dimensione
270.91 kB
Formato
Microsoft Word XML
|
270.91 kB | Microsoft Word XML | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/108813