While the use of solar heat for residential sector is already widely established, solar heat for industrial process (SHIP) applications is still in early stage of development. Although according to [1] the theoretical potential of solar heat for industrial process in Germany is the highest in Europe (134 TWh), nowadays only few SHIP system are installed. The SHIP sector current situation is due to different reasons: inadequate software design tools for industrial applications, lack of experts in SHIP field, scarcity of standard methods and best practices guides. Fraunhofer ISE is working with Valentine EnergieSoftware [2] in the project called SoProW with the purpose to develop a fast and flexible design tool for SHIP applications. The objective is to develop and insert five new standard integration concepts into the solar thermal design software T*SOL®. Low temperature applications suitable for different collector technologies, as well as steam generation using concentrating collectors will be implemented. The chosen systems represent relevant processes widely used in different fields of the industrial sector. The aim of this thesis is to set up an Indirect Steam Generation (IDSG) system with the dynamic simulation tool ColSim in order to compare and validate the results of the commercial tool T*SOL®. In the first part of this work the components developed in ColSim: Linear Fresnel Collector (LFC) and Evaporator (EVA) model are described and experimental validated, as explained in Chapter 4. In the second part of this work the two simulation tools ColSim and T*SOL® are compared. All the assumptions for the IDSG system simulation are summarized in Chapter 5. The two simulation tools ColSim and T*SOL® show a good accordance in the results for the defined system. The annual Q_(collector gain) for the ColSim and T*SOL® is respectively: 324.8 MWh and 333.4 MWh. The relative error is +2.64% and the value of the coefficient of correlation R^2 is 0.9469. The annual Q_(steam generated) for ColSim and T*SOL® is respectively: 313.4 MWh and 319.9 MWh. The relative error is +2.038% and the value of the coefficient of correlation R^2 is 0.9417. The main difference in the simulations outputs are caused by the different method of calculations assumed in the two simulations tools as explained in Chapter 5.
Mentre l’utilizzo della tecnologia del solare termico nel settore residenziale è fortemente diffuso, l’utilizzo in applicazioni industriali (Solar Heat for Industrial Process, SHIP) è ancora in una fase preliminare di sviluppo. Nonostante ciò, il potenziale di questa tecnologia è molto grande. Per un paese fortemente industrializzato come la Germania, è stato calcolato un potenziale teoretico per le applicazioni di solare termico industriale di 134 TWh [1]. Le ragioni della corrente situazione dello SHIP sono diverse: inadeguatezza dei software design tool per le applicazioni industriali, mancanza di esperti, scarsità di metodi di progettazione standard e guide lines. Fraunhofer ISE sta collaborando con Valentine EnergieSoftware [2] nel progetto SoProW con l´intento di sviluppare un software veloce e flessibile per il design delle SHIP applications. L´obbiettivo è quello di inserire cinque nuovi standard integration concept nel software T*SOL®. I processi scelti rappresentano rilevanti processi usati in diversi campi industriali. L´obbiettivo di questa tesi è lo sviluppo di un sistema di Produzione Indiretta di Vapore (IDSG) in ColSim al fine di confrontare e validare i risultati del software commerciale T*SOL®. Nella prima parte di questa tesi i componenti sviluppati in Colsim: Linear Fresnel Collector (LFC) e l´evaporatore (EVA) sono descritti e sperimentalmente validati, come spiegato nel Capitolo 4. Nella seconda parte di questo lavoro i due software di simulazione ColSim e T*SOL® sono confrontati assumendo un identico caso studio. Tutte le ipotesi sono riassunte nel Capitolo 5. I due software ColSim e T*SOL® mostrano un buon accordo nei risultati del caso studio definito. Q_(collector gain) annuale calcolata in ColSim e T*SOL® è rispettivamente di 324.8 MWh e 333.4 MWh, l’errore relativo è di +2.64% mentre il coefficiente di correlazione R^2 è 0.9469. Q_(steam generated) annuale per ColSim e T*SOL® è rispettivamente di 313.4 MWh e 319.9 MWh, l’errore relativo è di +2.038% mentre il coefficiente di correlazione R^2 è 0.9417. La principale differenza tra i due risultati delle simulazioni è dovuta a differenti metodi di calcolo utilizzati nei due software, come spiegato nel Capitolo 5.
Simulation implementation and software validation of indirect steam generation concept
REMONDINI, DAVIDE
2014/2015
Abstract
While the use of solar heat for residential sector is already widely established, solar heat for industrial process (SHIP) applications is still in early stage of development. Although according to [1] the theoretical potential of solar heat for industrial process in Germany is the highest in Europe (134 TWh), nowadays only few SHIP system are installed. The SHIP sector current situation is due to different reasons: inadequate software design tools for industrial applications, lack of experts in SHIP field, scarcity of standard methods and best practices guides. Fraunhofer ISE is working with Valentine EnergieSoftware [2] in the project called SoProW with the purpose to develop a fast and flexible design tool for SHIP applications. The objective is to develop and insert five new standard integration concepts into the solar thermal design software T*SOL®. Low temperature applications suitable for different collector technologies, as well as steam generation using concentrating collectors will be implemented. The chosen systems represent relevant processes widely used in different fields of the industrial sector. The aim of this thesis is to set up an Indirect Steam Generation (IDSG) system with the dynamic simulation tool ColSim in order to compare and validate the results of the commercial tool T*SOL®. In the first part of this work the components developed in ColSim: Linear Fresnel Collector (LFC) and Evaporator (EVA) model are described and experimental validated, as explained in Chapter 4. In the second part of this work the two simulation tools ColSim and T*SOL® are compared. All the assumptions for the IDSG system simulation are summarized in Chapter 5. The two simulation tools ColSim and T*SOL® show a good accordance in the results for the defined system. The annual Q_(collector gain) for the ColSim and T*SOL® is respectively: 324.8 MWh and 333.4 MWh. The relative error is +2.64% and the value of the coefficient of correlation R^2 is 0.9469. The annual Q_(steam generated) for ColSim and T*SOL® is respectively: 313.4 MWh and 319.9 MWh. The relative error is +2.038% and the value of the coefficient of correlation R^2 is 0.9417. The main difference in the simulations outputs are caused by the different method of calculations assumed in the two simulations tools as explained in Chapter 5.File | Dimensione | Formato | |
---|---|---|---|
2015_07_Remondini.pdf
non accessibile
Descrizione: Testo della Tesi
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/109074