In recent years the development of CFD simulations has increased the knowledge of fluid-structure interaction. This trend has been particularly important for floating body research fields such as offshore wind turbines and sailboats, involving two fluids, air and sea. However the reliability of CFD software requires further experimental validations. To this end, as a complementary approach to that of the test tank, there is the need to perform dynamic aeroelastic tests in the wind tunnel. In this thesis, project of a parallel kinematic machine has been addressed that emulates the fluid-structure interaction. The architecture of the machine has been chosen according to the specifications and behavior of the offshore wind turbine and sailboats interaction with sea waves. Kinetostatic optimization was performed with genetic algorithms in MATLAB environment; the dimensioning of the motor-reducer was conducted downstream of a dynamic simulation of the motion in Simulink, whereas the operating conditions are more severe. ADAMS MSc software was used for vibration analysis in small movements. Parallel Kinematic Machines (PKMs) are commonly used for tasks that require high precision and high stiffness. In this sense, the rigidity of the drive system of the robot, which is composed by actuators and transmissions, plays a fundamental role. In this thesis, ball-screw drive and belt drive actuators are considered and a 6 Degrees of Freedom (DoF) parallel robot with prismatic actuated joints is used as application case. A mathematical model of the ball-screw drive and belt drive are proposed by considering the most influencing non-linearities: sliding-dependent flexibility, backlash, and friction. Using this model, the most critical poses of the robot with respect to the kinematic mapping of the error from the joint- to the task-space, are systematically investigated to obtain the workspace positional and rotational resolution, apart from control issues. The error sensitivity analysis will do with respect to the most influencing non-linearities parameters. Finally, a non-linear adaptive robust control algorithm for trajectory tracking, based on the minimization of the tracking error, is described and simulated. The dynamic parameters were studied during the motion and introduced in the inverse dynamic model of the robot, which is used as a feed-forward compensator.
Negli ultimi anni la possibilità di sviluppare modelli CFD sempre più accurati ha permesso di approfondire la conoscenza delle interazioni fluido-struttura. Questa tendenza ha determinato risvolti particolarmente importanti nei campi di ricerca in cui ci si studia il comportamento di corpi galleggianti coinvolgendo al contempo due fluidi, aria e mare; come ad esempio le turbine eoliche offshore e le barche a vela. Tuttavia l’attendibilità dei corrispettivi codici di calcolo CFD richiede ulteriori validazioni sperimentali. A tal fine, come approccio complementare al tank test, emerge la necessità di eseguire prove dinamiche aeroelastici in galleria del vento. In questa tesi, è stato affrontato il progetto di una macchina a cinematica parallela (PKM) per emulare il comportamento di corpi galleggianti e testarne l'interazione fluido-struttura in galleria del vento. L'architettura della macchina è stata in particolare definita in modo da simulare l’interazione tra le onde del mare e, alternativamente, turbine eoliche offshore o imbarcazioni a vela. L’ottimizzazione cinetostatica è stata eseguita con algoritmi genetici in ambiente MATLAB; il dimensionamento del motore-riduttore è stato condotto a valle di una simulazione dinamica eseguita in Simulink, così come lo studio delle condizioni operative più gravose. Infine ADAMS MSc è stato utilizzato per analizzarne le vibrazioni indotte da piccoli movimenti. Le PKM sono comunemente usate per attività che richiedono alta precisione e alta rigidità. In questo senso, la rigidità del sistema di azionamento del robot, composto da attuatori e trasmissioni, gioca un ruolo fondamentale. In questa tesi, è stato considerato come caso di studio un robot a cinematica parallela con 6 gradi di libertà (DOF) e giunti prismatici attuati sia per mezzo di trasmissioni a vite senza fine che a cinghia. Per entrambi i tipi di azionamento vengono proposti dei modelli matematici considerando le principali fonti di non linearità: flessibilità, giochi e attrito. Utilizzando questo modello, le pose più critiche del robot sono sistematicamente studiate, in funzione della mappatura dell’errore, per testare l’accuratezza di posizionamento prescindendo da quelli che sono i problemi di controllo. L'analisi di sensitività dell’errore rispetto ai parametri che influenzano le non-linearità viene inoltre proposta. Infine, un robusto algoritmo di controllo di tipo adattativo non-lineare per l'inseguimento della traiettoria, basato sulla minimizzazione dell'errore di inseguimento, è descritto e simulato. In tal senso il modello dinamico inverso del robot viene utilizzato come compensatore di tipo feed-forward.
Design of a 6-dof floating motion simulator for hardware-in-the-loop wind tunnel tests on nautical components
NEGAHBANI, NAVID
Abstract
In recent years the development of CFD simulations has increased the knowledge of fluid-structure interaction. This trend has been particularly important for floating body research fields such as offshore wind turbines and sailboats, involving two fluids, air and sea. However the reliability of CFD software requires further experimental validations. To this end, as a complementary approach to that of the test tank, there is the need to perform dynamic aeroelastic tests in the wind tunnel. In this thesis, project of a parallel kinematic machine has been addressed that emulates the fluid-structure interaction. The architecture of the machine has been chosen according to the specifications and behavior of the offshore wind turbine and sailboats interaction with sea waves. Kinetostatic optimization was performed with genetic algorithms in MATLAB environment; the dimensioning of the motor-reducer was conducted downstream of a dynamic simulation of the motion in Simulink, whereas the operating conditions are more severe. ADAMS MSc software was used for vibration analysis in small movements. Parallel Kinematic Machines (PKMs) are commonly used for tasks that require high precision and high stiffness. In this sense, the rigidity of the drive system of the robot, which is composed by actuators and transmissions, plays a fundamental role. In this thesis, ball-screw drive and belt drive actuators are considered and a 6 Degrees of Freedom (DoF) parallel robot with prismatic actuated joints is used as application case. A mathematical model of the ball-screw drive and belt drive are proposed by considering the most influencing non-linearities: sliding-dependent flexibility, backlash, and friction. Using this model, the most critical poses of the robot with respect to the kinematic mapping of the error from the joint- to the task-space, are systematically investigated to obtain the workspace positional and rotational resolution, apart from control issues. The error sensitivity analysis will do with respect to the most influencing non-linearities parameters. Finally, a non-linear adaptive robust control algorithm for trajectory tracking, based on the minimization of the tracking error, is described and simulated. The dynamic parameters were studied during the motion and introduced in the inverse dynamic model of the robot, which is used as a feed-forward compensator.File | Dimensione | Formato | |
---|---|---|---|
thesis.pdf
non accessibile
Descrizione: Thesis text navid
Dimensione
38.22 MB
Formato
Adobe PDF
|
38.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/109746