In the present work, Kesterite Cu2ZnSnS(e)4 [CZTS(e)] thin films were successfully prepared using an electrodeposition – annealing route, in which Cu-Zn-Sn (CZT) metal precursors (co-electrodeposited/stacked layers) were deposited by a novel approach on Mo substrate, followed by annealing in elemental sulfur/selenium environment in quartz tube furnace with N2 atmosphere. Different characterization techniques like XRD, SEM, EDS, PL spectroscopy, Raman spectroscopy, GDOES and cross-sectional image have ensured the well formed Kesterite CZTS(e) after sulfurization/selenization of the CZT precursors. Results of various characterization methods have matched up well with existing literatures. By using horizontal rotating working electrode during co-electrodeposition, almost mirror like precursors (Ra ≈ 0.094 µm) of CZT were obtained with homogenous distribution of Cu, Zn and Sn along the surface from single electrolyte. Surface homogeneity and roughness are very critical parameter from the fabrication point of view of CZTS(e). During sulfurization/selenization, effects of precursor compositions, ramping rates, soft annealing and periods of annealing at high temperature have been investigated. It has been observed that high ramping rate (here 20 °C min-1), Cu-poor and Zn-rich precursors are good for the formation of good crystalline form of CZTS(e). In addition it was also found that 2 h annealing at 550 °C for CZTS and 1 h annealing at 550 °C for CZTSe are enough to form CZTS(e). Moreover, It has also seen that by using soft annealing at 350 °C for 20 min before sulfurization/selenization, high temperature sulfurization/selenization periods can be tuned up to 10 min. Besides from co-electrodeposited CZT precursor, Kesterite-Cu2ZnSnS4 (CZTS) films were also successfully synthesized by using electrodeposition-annealing by using novel stacked layer approach. Adherent and homogeneous Cu-poor, Zn-rich stacked metallic CZT precursors with different compositions were sequentially electrodeposited in Cu-Sn/Zn order onto Mo foils substrate. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N2 atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N2 atmosphere. After fabrication of CZTS(e), n-type CdS buffer layer was deposited by chemical bath deposition using cadmium acetate. Before depositing of CdS, CZTS(e) films were etched by 0.5M KCN solution for 30 s. A 80 nm intrinsic i-ZnO buffer layer, which acts as to prevent any shunts, was then deposited by RF sputtering. The TCO layer consisting of 350 nm Al-doped ZnO (AZO) was grown by DC pulsed (2 kHz) sputtering. Finaly, cells were completed by evaporating an Al grid contact on it. A 0.6% efficient CZTS solar cell was fabricated on Mo foil substrate which is the first of this kind of solar cell on Mo foil. In addition to this, a sulfurized CZTS film was again selenized in order to form CZTSSe as record efficiency of this kind of solar cell are coming from CZTSSe thin film solar cells. The major XRD diffraction peak of CZTSSe was observed at 27.35°, 45.35° and 53.77° which are in good agreement with the literatures.
Nel presente lavoro, film sottili di Kesterite Cu2ZnSnS(e)4 [CZTS(e)] sono stati preparati con successo utilizzando un procedimento di elettrodeposizione-ricottura, nel quale il precursore metallico Cu-Zn-Sn (CZT) è stato depositato (per co-elettrodeposizione o in strati separati) su un substrato in Mo tramite un approccio innovativo, seguito da una ricottura in presenza di zolfo/selenio puri misti a N2 in una fornace tubolare di quarzo. Diverse tecniche di caratterizzazione quali XRD, SEM, EDS, spettroscopia PL, spettroscopia Raman, GDOES ed analisi in sezione hanno confermato la presenza di Kesterite CZTS(e) ben formata dopo la solforizzazione/selenizzazione dei precursori CZT. I risultati dei vari metodi di caratterizzazione sono risultati in buon accordo con la letteratura esistente. Utilizzando un elettrodo di lavoro rotante in posizione orizzontale durante la co-elettrodeposizione, si sono ottenuti precursori CZT da singolo elettrolita con finitura quasi a specchio (Ra ≈ 0.094 µm) e con una distribuzione superficiale uniforme di Cu, Zn e Sn. L’omogeneità superficiale e la rugosità sono parametri critici dal punto di vista della fabbricazione di CZTS(e). Durante la solforizzazione/selenizzazione si sono investigati gli effetti legati alla composizione dei precursori, alla rampa di riscaldamento, all’uso di una ricottura preliminare e al tempo di permanenza ad alta temperatura. E’ stato osservato che elevati ratei di riscaldamento (20° C min-1), nonché precursori poveri in Cu e ricchi di Zn sono ottimali per la formazione di CZTS(e) in forma cristallina di buona qualità. In più è stato anche evidenziato che ricotture di 2 h a 550 °C per CZTS e di 1 h a 550 °C per CZTSe sono sufficienti per formare CZTS(e). Oltre a tutto questo, è stato anche osservato che praticando una ricottura preliminare a 350 °C per 20 min prima della solforizzazione/selenizzazione, i tempi di permanenza ad alta temperatura della medesima possono essere ridotti a 10 min. Accanto ai precursori CZT co-elettrodeposti, stati di Kesterite-Cu2ZnSnS4 (CZTS) sono stati anche sintetizzati con successo utilizzando un approccio innovativo a strati separati in elettrodeposizione-ricottura. Precursori CZT a strati separati aderenti ed omogenei, poveri in Cu e ricchi di Zn, sono stati elettrodeposti sequenzialmente a dare varie composizioni secondo l’ordine Cu-Sn/zn su substrati di Mo. Subito dopo, gli strati sono stati sottoposti a ricottura preliminare a 350 °C per 20 min in atmosfera di N2 al fine di favorire l’interdiffusione dei diversi elementi. Infine, la solforizzazione è stata completata in una fornace tubolare di quarzo per mezzo di un ambiente contenente zolfo puro e N2 per 15 min a 585 °C. Dopo la fabbrizazione del CZTS(e), uno strato buffer di tipo n a base di CdS è stato applicato tramite deposizione da bagno chimico usando cadmio acetato. Prima di depositare il CdS, i rivestimenti di CZTS(e) sono stati sottoposti a etching in una soluzione 0,5 M KCN per 30 s. Uno strato buffer di i-ZnO di 80 nm, il quale previene ogni possibile corto circuito, è stato poi deposto tramite sputtering RF. Lo strato TCO costituito da 350 nm di ZnO drogato con Al (AZO) è stato applicato tramite sputtering a impulsi in corrente continua (2 kHz). Infine, le celle sono state completate evaporandovi sopra una griglia di contatti in Al. Una cella solare caratterizzata da un efficienza del 0,6 % è stata fabbricata, prima nel suo genere, su di un foglio di Mo. In aggiunta a tutto quello che finora si è descritto, uno strato di CZTS da solforizzazione è stato anche selenizzato al fine di formare CZTSSe, dal momento che i record di efficienza per questo genere di celle solari sono stati registrati nei casi di tecnologia a film sottile. Il picco di diffrazione principale XRD per CZTSSe è stato osservato a 27.35°, 45.35° e 53.77°, in buon accordo con la letteratura.
Fabrication of CZTS(e) thin film solar cells from electrodeposited metallic precursor layers
KHALIL, MD. IBRAHIM
Abstract
In the present work, Kesterite Cu2ZnSnS(e)4 [CZTS(e)] thin films were successfully prepared using an electrodeposition – annealing route, in which Cu-Zn-Sn (CZT) metal precursors (co-electrodeposited/stacked layers) were deposited by a novel approach on Mo substrate, followed by annealing in elemental sulfur/selenium environment in quartz tube furnace with N2 atmosphere. Different characterization techniques like XRD, SEM, EDS, PL spectroscopy, Raman spectroscopy, GDOES and cross-sectional image have ensured the well formed Kesterite CZTS(e) after sulfurization/selenization of the CZT precursors. Results of various characterization methods have matched up well with existing literatures. By using horizontal rotating working electrode during co-electrodeposition, almost mirror like precursors (Ra ≈ 0.094 µm) of CZT were obtained with homogenous distribution of Cu, Zn and Sn along the surface from single electrolyte. Surface homogeneity and roughness are very critical parameter from the fabrication point of view of CZTS(e). During sulfurization/selenization, effects of precursor compositions, ramping rates, soft annealing and periods of annealing at high temperature have been investigated. It has been observed that high ramping rate (here 20 °C min-1), Cu-poor and Zn-rich precursors are good for the formation of good crystalline form of CZTS(e). In addition it was also found that 2 h annealing at 550 °C for CZTS and 1 h annealing at 550 °C for CZTSe are enough to form CZTS(e). Moreover, It has also seen that by using soft annealing at 350 °C for 20 min before sulfurization/selenization, high temperature sulfurization/selenization periods can be tuned up to 10 min. Besides from co-electrodeposited CZT precursor, Kesterite-Cu2ZnSnS4 (CZTS) films were also successfully synthesized by using electrodeposition-annealing by using novel stacked layer approach. Adherent and homogeneous Cu-poor, Zn-rich stacked metallic CZT precursors with different compositions were sequentially electrodeposited in Cu-Sn/Zn order onto Mo foils substrate. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N2 atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N2 atmosphere. After fabrication of CZTS(e), n-type CdS buffer layer was deposited by chemical bath deposition using cadmium acetate. Before depositing of CdS, CZTS(e) films were etched by 0.5M KCN solution for 30 s. A 80 nm intrinsic i-ZnO buffer layer, which acts as to prevent any shunts, was then deposited by RF sputtering. The TCO layer consisting of 350 nm Al-doped ZnO (AZO) was grown by DC pulsed (2 kHz) sputtering. Finaly, cells were completed by evaporating an Al grid contact on it. A 0.6% efficient CZTS solar cell was fabricated on Mo foil substrate which is the first of this kind of solar cell on Mo foil. In addition to this, a sulfurized CZTS film was again selenized in order to form CZTSSe as record efficiency of this kind of solar cell are coming from CZTSSe thin film solar cells. The major XRD diffraction peak of CZTSSe was observed at 27.35°, 45.35° and 53.77° which are in good agreement with the literatures.File | Dimensione | Formato | |
---|---|---|---|
2015_03_PhD_Md Ibrahim Khalil.pdf
non accessibile
Descrizione: PhD thesis
Dimensione
7.95 MB
Formato
Adobe PDF
|
7.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/109761