The endurance of a component under cyclic loading, known as fatigue, costs approximately 200 billion US $ per year worldwide. The prediction of the service lifetime of a component has a huge impact in many aspects – economical, environmental and safety. One of the methods used for its determination is the Local Strain Concept. This concept implements the idea that the material model previously determined through experiments can be reused for the lifetime calculations of any geometry under any loading, as long as the material is the same. A “Commercial Software” that calculates the lifetime of a component based on Finite Element Analysis (FEA) and the Local Strain Concept (also the Stress Concept) is investigated here. In a newer version of the software, a method to consider the stress gradient effect is implemented for both concepts. The implemented Stress Gradient Correction is based on the Stress Concept and adapted to the Local Strain Concept. In this Master Thesis the evaluation and implementation of the stress gradient effect using the Stress Gradient Correction will be investigated. There are different approaches of implementing the stress gradient influence to the calculation method. Two of them will be discussed in here. The first one is the one currently used within the company (ZF Friedrichshafen AG), where the P Wohler curve is shifted (up or down) based on a coefficient that is derived from influence factors (statistical size effects, surface roughness and etc.). One of these is the stress gradient. The second one uses the derived influence factor (from the stress gradient) to reduce the pseudo elastic stresses. This paper investigates the difference between both calculation methods and their effects on the results. In addition, recommendations are made based on the findings.
L'esercizio di un componente sotto un carico ciclico, ovvero, la fatica, genera ogni anno, in tutto il mondo, un costo di circa 200 miliardi di $ USA. La previsione della vita utile di un componente ha un grande impatto economico, ambientale e dal punto di vista della sicurezza. Uno dei metodi usati per il calcolo della vita utile è il "Local Strain Concept". Questo metodo si basa sull'idea che il modello del materiale determinato precedentemente in modo sperimentale possa essere riusato per il calcolo della vita utile, anche per geometria e tipo di carico differenti, a patto di mantenere lo stesso materiale. Vogliamo investigare il "Local Strain Concept", lo "Stress Concept" e un "Software Commerciale" basato sull'analisi a elementi finiti (FEA) per il calcolo della vita utile. In una versione più recente del software, è implementato un metodo per tenere in considerazione gli effetti del gradiente dello sforzo sia per il "Local Strain Concept" che per lo "Stress Concept". La "Stress Gradient Correction" è implementata basandosi sullo "Stress Concept" e adattata per il "Local Strain Concept". In questa tesi di Laurea Magistrale investigheremo l'implementazione e il calcolo dello "Stress Gradient" usando la "Stress Gradient Correction". Esistono diversi approcci per l'implementazione dello "Stress Gradient": investigheremo due di questi. Il primo è quello attualmente usato in azienda (ZF Friedrichshafen AG), in cui la curva di Wholer viene traslata (verso l'alto o verso il basso) a seconda del valore di un coefficiente che dipende dai fattori di influenza (effetto dimensionale, rugosità et cetera). Uno di questi fattori è lo "Stress Gradient". Il secondo approccio si basa sui fattori di influenza calcolati (a partire dallo "Stress Gradient") per ridurre gli sforzi pseudo-elastici. In questa tesi confronteremo i due approcci in termini di implementazione ed efficacia e proporremo suggerimenti sulla base dei risultati ottenuti.
Evaluation and implementation of the Notch support factor within commercial software for lifetime calculations with the local strain concept
CHERVENKOV, VIHAR
2014/2015
Abstract
The endurance of a component under cyclic loading, known as fatigue, costs approximately 200 billion US $ per year worldwide. The prediction of the service lifetime of a component has a huge impact in many aspects – economical, environmental and safety. One of the methods used for its determination is the Local Strain Concept. This concept implements the idea that the material model previously determined through experiments can be reused for the lifetime calculations of any geometry under any loading, as long as the material is the same. A “Commercial Software” that calculates the lifetime of a component based on Finite Element Analysis (FEA) and the Local Strain Concept (also the Stress Concept) is investigated here. In a newer version of the software, a method to consider the stress gradient effect is implemented for both concepts. The implemented Stress Gradient Correction is based on the Stress Concept and adapted to the Local Strain Concept. In this Master Thesis the evaluation and implementation of the stress gradient effect using the Stress Gradient Correction will be investigated. There are different approaches of implementing the stress gradient influence to the calculation method. Two of them will be discussed in here. The first one is the one currently used within the company (ZF Friedrichshafen AG), where the P Wohler curve is shifted (up or down) based on a coefficient that is derived from influence factors (statistical size effects, surface roughness and etc.). One of these is the stress gradient. The second one uses the derived influence factor (from the stress gradient) to reduce the pseudo elastic stresses. This paper investigates the difference between both calculation methods and their effects on the results. In addition, recommendations are made based on the findings.File | Dimensione | Formato | |
---|---|---|---|
2015_10_Chervenkov.pdf
solo utenti autorizzati dal 29/09/2018
Descrizione: Master Thesis - Vihar Chervnkov
Dimensione
18.97 MB
Formato
Adobe PDF
|
18.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/112884