The spine is one of the most important structures of the human body, being fundamental to maintain the posture, to guarantee the motion and to protect the spinal cord and to sustain mechanical loads. However, it is also subjected to several pathologies that can involve the various components such as vertebrae, discs and ligaments. In order to understand the mechanisms that lead to a pathological condition and to suggest surgical strategies to clinicians, it is essential to study the spine biomechanics, in healthy conditions as well as after surgical treatments. Several methods can be used: clinical studies, in vitro testing on animal and human specimens or numerical models. Experimental tests and computational models are usually complementary, because the predictions of the latter should be validated with experimental data. In the first part of this PhD thesis a complete description of an experimental campaign conducted on human thoracic motions segments is presented. A stepwise reduction of the components of three different functional units (T2-T3, T6-T7, T10-T11) was performed, highlighting the role of each structure on the spine biomechanics. In all the cases, the Range of Motion increased after each resection while a decrease was noted going from the upper to the lower thoracic spine. The greatest effect was due to the removal of the posterior elements and to the nucleotomy. The second part of the work consists in a precise description of the methods employed to create a complete finite element model of the thoraco-lumbar spine (T9-S1). The vertebrae were reconstructed from CT scans and then assembled to intervertebral discs and ligaments. The model underwent a validation to verify the correct material properties of the components and the kinematics of each motion segment. The validation was performed using experimental data and information found in the literature. This finite element model was then used to simulate different surgical techniques and possible configurations of devices. The first study was focused on the comparison of vertebroplasty and kyphoplasty on the thoracic spine (T9-T11), two techniques used in case of vertebral fractures and based on the injection of bone cement into the vertebral body. The analysis of various factors revealed that the stress reduction on the endplates following augmentation is more related to the height improvement, achieved after the surgical treatments with respect to the collapsed configuration, rather than the insertion of a stiffer material (cement). A second application was the study of the Pedicle Subtraction Osteotomy on the lumbar spine (L1-L5): after a first analysis of the destabilization produced with the surgical technique, different configurations of devices were tested in order to identify the best solution, that could minimize the risk of failure of the instrumentation. The results showed that performing the osteotomy on a lower level (e.g. L4-L5) seems to have a greater effect on the correction. Two materials of the spinal fixators were compared but no differences were found. A bigger rod diameter and the use of two parallel rods instead, seems to be favourable in order to enhance the hardware mechanical reliability. Also the use of an anterior support by means of cages was evaluated: the best solutions seems to be single rods and two cages or two rods and two cages. The last example of application of the finite element model regarded the study of various surgical techniques used for the treatment of the lumbar spinal stenosis. In this case, the numerical model of two functional units (L3-L5) was refined, the effect of two degrees of stenosis was compared, as well as the outcome of the decompressions. However, no particular differences were found and further experimental studies are required.
La colonna vertebrale è una delle strutture più importanti del corpo umano, essendo fondamentale per mantenere la postura eretta, garantire il movimento, proteggere il midollo spinale e sostenere i carichi meccanici. È però soggetta anche a numerose patologie che possono coinvolgere le varie componenti come vertebre, dischi e legamenti. Allo scopo di comprendere i meccanismi che inducono a condizioni patologiche e suggerire strategie ai clinici, è essenziale studiare la biomeccanica spinale, in condizioni sane così come dopo trattamenti chirurgici. Vari metodi possono essere utilizzati: studi clinici, esperimenti in vitro su campioni animali ed umani oppure modelli numerici. Prove sperimentali e modelli computazionali sono di solito complementari, perché the predizioni dei secondi dovrebbero essere validate con dati sperimentali. Nella prima parte di questa tesi di dottorato è presentata una descrizione completa di una campagna sperimentale condotta su unità funzionali toraciche umane. È stata effettuata una progressiva rimozione delle componenti di tre diverse unità funzionali (T2-T3, T6-T7, T10-T11), evidenziando il ruolo di ciascuna struttura rispetto alla biomeccanica spinale. In tutti i casi, il Range of Motion aumenta dopo ciascuna resezione mentre diminuisce andando dalla parte superiore a quella inferiore della colonna toracica. L’effetto maggiore è dovuto alla rimozione degli elementi posteriori ed alla nucleotomia. La seconda parte del lavoro consiste nella descrizione precisa dei metodi utilizzati per creare un modello ad elementi finiti completo del tratto toraco-lombare della colonna (T9-S1). Le vertebre sono state ricostruite da immagini TAC ed assemblate a dischi intervertebrali e legamenti. Il modello è stato sottoposto ad una validazione per verificare le corrette proprietà dei materiali dei componenti ed assicurare una corretta cinematica. La validazione è stata eseguita utilizzando dati sperimentali e informazioni trovate in letteratura. Questo modello ad elementi finiti è stato poi usato per simulare diverse tecniche chirurgiche e configurazioni di dispositivi. Un primo studio è focalizzato sul confronto sulla colonna toracica (T9-T11) di vertebroplastica e cifoplastica, due tecniche chirurgiche usate in caso di fratture vertebrali e basate sull’iniezione di cemento per ossa nei corpi vertebrali. L’analisi di vari fattori ha rivelato che la riduzione dello sforzo sugli endplates a seguito dell’introduzione di cemento, è più correlata al ripristino dell’altezza del corpo vertebrale rispetto alla situazione collassata che all’ inserimento di un materiale più rigido (cemento). Una seconda applicazione è stata lo studio della Osteotomia di Sottrazione Peduncolare sulla colonna lombare (L1-L5): dopo una prima analisi della destabilizzazione prodotta con la tecnica chirurgica, diverse configurazioni di dispositivi sono state studiate per identificare la soluzione migliore per minimizzare il rischio di fallimento dell’impianto. I risultati hanno mostrato come eseguire l’osteotomia ad un livello inferiore (L4-L5) sembri avere un effetto maggiore sulla correzione. Sono stati confrontati due materiali diversi per I fissatori spinali, senza trovare però differenze. L’uso di un diametro delle barre maggiore o di due barre parallele invece, sembra favorevole per migliorare l’affidabilità meccanica dei dispositivi. È stato valutato anche l’uso di un supporto anteriore (cage): la soluzione migliore sembra essere l’uso di singole barre e due cage oppure due barre e due cage. L’ultimo esempio di applicazione del modello ad elementi finiti ha riguardato lo studio di varie tecniche chirurgiche usate per il trattamento di stenosi spinale lombare. In questo caso è stato raffinato il modello nel tratto L3-L5 ed è stato confrontato l’effetto di due gradi di stenosi, così come delle tecniche di decompressione. Comunque non sono state registrate particolari differenze ed ulteriori studi sperimentali saranno necessari.
Strategies for the biomechanical evaluation of spine surgery: computational models and experimental testing
OTTARDI, CLAUDIA
Abstract
The spine is one of the most important structures of the human body, being fundamental to maintain the posture, to guarantee the motion and to protect the spinal cord and to sustain mechanical loads. However, it is also subjected to several pathologies that can involve the various components such as vertebrae, discs and ligaments. In order to understand the mechanisms that lead to a pathological condition and to suggest surgical strategies to clinicians, it is essential to study the spine biomechanics, in healthy conditions as well as after surgical treatments. Several methods can be used: clinical studies, in vitro testing on animal and human specimens or numerical models. Experimental tests and computational models are usually complementary, because the predictions of the latter should be validated with experimental data. In the first part of this PhD thesis a complete description of an experimental campaign conducted on human thoracic motions segments is presented. A stepwise reduction of the components of three different functional units (T2-T3, T6-T7, T10-T11) was performed, highlighting the role of each structure on the spine biomechanics. In all the cases, the Range of Motion increased after each resection while a decrease was noted going from the upper to the lower thoracic spine. The greatest effect was due to the removal of the posterior elements and to the nucleotomy. The second part of the work consists in a precise description of the methods employed to create a complete finite element model of the thoraco-lumbar spine (T9-S1). The vertebrae were reconstructed from CT scans and then assembled to intervertebral discs and ligaments. The model underwent a validation to verify the correct material properties of the components and the kinematics of each motion segment. The validation was performed using experimental data and information found in the literature. This finite element model was then used to simulate different surgical techniques and possible configurations of devices. The first study was focused on the comparison of vertebroplasty and kyphoplasty on the thoracic spine (T9-T11), two techniques used in case of vertebral fractures and based on the injection of bone cement into the vertebral body. The analysis of various factors revealed that the stress reduction on the endplates following augmentation is more related to the height improvement, achieved after the surgical treatments with respect to the collapsed configuration, rather than the insertion of a stiffer material (cement). A second application was the study of the Pedicle Subtraction Osteotomy on the lumbar spine (L1-L5): after a first analysis of the destabilization produced with the surgical technique, different configurations of devices were tested in order to identify the best solution, that could minimize the risk of failure of the instrumentation. The results showed that performing the osteotomy on a lower level (e.g. L4-L5) seems to have a greater effect on the correction. Two materials of the spinal fixators were compared but no differences were found. A bigger rod diameter and the use of two parallel rods instead, seems to be favourable in order to enhance the hardware mechanical reliability. Also the use of an anterior support by means of cages was evaluated: the best solutions seems to be single rods and two cages or two rods and two cages. The last example of application of the finite element model regarded the study of various surgical techniques used for the treatment of the lumbar spinal stenosis. In this case, the numerical model of two functional units (L3-L5) was refined, the effect of two degrees of stenosis was compared, as well as the outcome of the decompressions. However, no particular differences were found and further experimental studies are required.File | Dimensione | Formato | |
---|---|---|---|
2015_12_PhD_Ottardi.pdf
solo utenti autorizzati dal 14/11/2018
Descrizione: Tesi
Dimensione
25.91 MB
Formato
Adobe PDF
|
25.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/113663