Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the destruction of the producing insulin cells (ß-cells). The current clinical treatment for patients with T1DM consists of exogenous insulin; in addition, transplantation of allogenic islets by intraportal infusion offers a novel therapeutic approach. Despite its great potential and progressively advance in term of success rate, thanks to the advantage introduced by Edmonton Protocol (with steroid-free immunosuppression, ClinicalTrials.gov number, NCT00014911) the long term success of this procedure is not always guaranteed. Many variables can affect the success of transplant: i) isolation, purification, culture condition and procedures, ii) transplant procedure (activation of the coagulation cascade, Instant Blood Mediated Inflammatory Reaction, mechanical stress, release of cytokines and toxins). As result of this procedure, 75% of transplanted pancreatic islet tissue undergoes cell death soon after transplantation, even in the absence of a specific immune response. Above all this consideration, recreating the ß-cell niche and its 3D structure pre-transplant appears necessary to preserve function and survival of pancreatic islets. Recently, biomaterials have been proposed in order to overcome some of the problems related to the islet transplantation. In this context, the study of the thesis aims to identify and develop an innovative strategy based on the use of polymeric structures (cytoprotective and stimulating angiogenesis) to preserve the function of the islets and increase the success rate of the transplant. To achieve this purpose, the specific aims of the project are the following ones: I. a bibliography research to design the structure; II. identification a new polymeric materials with mechanical, chemico- physical characteristic suitable III. for the study; IV. development of the structures using the selected materials and evaluation of their chemico-physical V. and mechanical properties; VI. evaluation of the sterilization effects on the hydrogel structure; VII. evaluation of the in vitro interaction between the developed structures and the pancreatic islets (from rodent and human), assessing adhesion and functionality; VIII. assessment of the in vivo efficiency of the developed structures for pancreatic islet transplantation in a murine model. The results obtained by each step will be used to identify the optimal strategies for achieving the final aim of the project. A gelatin hydrogel recently patented in the Laboratory of Biomaterials of the Politecnico di Milano (PCT/EP2012/060277) was identified as an ideal candidate to support pancreatic islets. A first morphological, chemical-physical and mechanical characterization, was conducted and have been shown that this hydrogel could be an ideal candidate to support pancreatic islets culture. The proposed gelatin hydrogel shows a porous morphology, suitable for cells adhesion and engraftment; moreover its swelling property allows to load an ideal amount of pancreatic islets suitable for the transplant. The viscoelastic component and the ability to respond to mechanical stress make the proposed gelatin hydrogel an excellent carrier and scaffold to protect pancreatic islets during implant and a support for islets in vivo function. After the complete characterization of proposed hydrogel, in this thesis work the in vitro interaction between human and murine pancreatic islets it has been evaluated. Experiments to define the optimal culture conditions of pancreatic islets in the proposed 3D support were first conducted. The pancreatic islets were able to maintain their 3D structure once they were seeded into the proposed hydrogel and they were viable and in vitro able to respond to external stimuli. Pancreatic islets seeded into the gelatin hydrogel in vitro, were in fact able to answer to external changes in glucose concentrations, releasing insulin. With the intention to translate the proposed culture system in clinical practice, the effect of two of the widespread sterilization techniques in the biomedical field (ie, gas plasma and ethylene oxide), on the structure, morphological and mechanical characteristics of the proposed gelatin hydrogel were evaluated. In this thesis works, it was possible to demonstrate that the two explored sterilization technique doesn’t change the chemical-physical characteristics of the gelatin hydrogel and don’t influence negatively the interaction between gelatin hydrogel and islets. It was also possible to test in vivo the ability of the proposed gelatin hydrogel to support islets in an extrahepatic pancreatic islets transplantation murine model. In fact, diabetic mice that received pancreatic islets seeded into the gelatin hydrogel and transplanted in the peritoneal, were able to reverts their hyperglycaemic state in a shorter time compared to the mice that received the transplanted islets free in the peritoneum space. In conclusion, with this thesis works, it was possible to demonstrate that a three-dimensional support, specifically a cross-linked gelatin hydrogel, is crucial for the survival and function of pancreatic islets cells in vivo and in vitro. The proposed gelatin hydrogel allowed preventing pancreatic islets lost, preserving functionality and increasing the effectiveness of transplant.
Il diabete mellito di tipo 1 è una malattia autoimmunitaria che causa la distruzione delle cellule β−pancreatiche secernenti insulina, presenti nel pancreas. Il ripristino della funzione -cellulare può essere ottenuto mediante il trapianto di isole pancreatiche . Nell’uomo, il fegato è il sito attualmente utilizzato in clinica per il trapianto di isole pancreatiche. Nonostante i significativi miglioramenti indotti dal protocollo Edmonton (che prevede un protocollo immunosoppressivo senza steroidi; ClinicalTrials.gov number, NCT00014911), la capacità di raggiungere l’insulino-dipendenza nei pazienti con diabete di tipo 1 rimane limitata. Molte variabili possono, infatti, compromettere il successo di questa terapia; tra queste si possono citare: i) le procedure di isolamento, purificazione e coltura pre-trapianto; ii) il trapianto stesso, per i processi infiammatori correlati alla meccanica e al sito di impianto (attivazione della cascata coagulativa, IBMIR (Instant Blood-Mediated Inflammatory Reaction), stress meccanico, rilascio di citochine). Come risultato di questi eventi negativi, circa il 75% della massa cellulare trapiantata viene distrutta nei primi minuti dopo l’infusione. Ricreare la niche β-cellulare e la sua struttura 3D pre-trapianto risulta quindi necessario per preservarne la funzionalità e la sopravvivenza a lungo termine. L’utilizzo di biomateriali è una possibile strategia per risolvere alcune di queste problematiche. In letteratura, numerosi sono i lavori (per lo piu’ in modelli murini) riguardanti l’utilizzo di biomateriali per supportare, in un sito extraepatico, il trapianto di isole pancreatiche. Ad ora però, sono ancora numerose le problematiche incontrate in questo tipo di strategia. Ad oggi, la maggior parte dei biomateriali/strutture utilizzati a questo scopo, principalmente microcapsule, hanno infatti dimostrato numerosi limiti: ridotta sopravvivenza cellulare, fibrosi, mancata rivascolarizzazione del tessuto. Inoltre, alcuni sistemi proposti (specialmente dispositivi intravascolari) richiedono una chirurgia invasiva che quindi non giustifica l’avanzamento della procedura rispetto a quella che costituisce il gold standard di riferimento, cioè l’embolizzazione delle isole nella vena porta. Obiettivo della ricerca oggetto del presente lavoro di dottorato è stato quello di identificare e utilizzare una struttura polimerica multifunzionale (che proteggesse le isole dagli insulti esterni senza impedirne la funzionalità e mimando un microambiente ideale simile al pancreas in toto) per prevenire la perdita di isole, preservandone il più possibile la funzionalità e aumentandone l’efficacia del trapianto stesso cercando di risolvere i problemi riscontrati impiegando differenti strutture descritte in lavori di letteratura. Per raggiungere lo scopo prefissato, il progetto di tesi si articola nelle seguenti fasi di ricerca: (i) progettazione di una struttura polimerica partendo da un’analisi di letteratura; (ii) identificazione di un nuovo materiale polimerico con proprietà superficiali, chimico-fisiche, meccaniche e di interazione biologica cellulare adatte allo scopo; (iii) sviluppo della struttura utilizzando i materiali identificati e caratterizzazione per valutarne le proprietà chimico-fisiche e meccaniche; (iv) valutazione degli effetti della sterilizzazione sulle caratteristiche chimico-fisiche e meccaniche del materiale; (v) valutazione dell’ interazione biologica in vitro del biomateriale con isole pancreatiche umane e murine (valutandone l’adesione e la funzionalità); (vi) valutazione dell’effettiva funzionalità del supporto realizzato in vivo in modello preclinico murino. Un idrogelo di gelatina reticolata recentemente brevettato presso il Laboratorio di Biomateriali del Politecnico di Milano (PCT / EP2012 / 060277) è risultato un candidato ideale per il supporto delle isole pancreatiche. La caratterizzazione morfologica, chimico-fisica e meccanica precedente svolta ha dimostrato che questo idrogelo possiede proprietà adeguate per essere considerato un ottimo candidato per la coltura insulare. Presenta, infatti, una morfologia ideale per l’attecchimento e l’adesione delle cellule; la sua capacità di rigonfiarsi, permette il caricamento di una quantità ideale di isole pancreatiche che ne permettono il trapianto; la componente viscoelastica e la sua capacità di rispondere agli stress meccanici dimostrano che sia un ottimo candidato per la protezione insulare in sede di impianto. In seguito allo studio della caratterizzazione dell’idrogelo, la fase di studio dell’interazione dell’idrogelo di gelatina con le isole ha permesso di mettere a punto le condizioni di coltura ottimale per le isole stesse sul supporto. Si è osservato come le isole mantenessero la loro struttura 3D nell’idrogelo, fossero vitali e fossero in grado di rispondere agli stimoli esterni. Si è, infatti, dimostrato come le isole, anche nella proposta struttura 3D, fossero in grado di rispondere a variazioni di glucosio, rilasciando insulina. Con l’intento di trasferire il proposto sistema di coltura nella pratica clinica, è stato inoltre dimostrato come due delle tecniche di sterilizzazione più usate in ambito biomedicale (i.e., gas plasma e ossido di etilene), non alterino la struttura e le caratteristiche morfologiche e meccaniche dell’idrogelo di gelatina. Inoltre, la sterilizzazione, non alterando in nessun modo le caratteristiche chimico-fisiche dell’idrogelo, non ne altera la sua buona interazione con le isole pancreatiche. L’efficacia del supporto tridimensionale, si è poi dimostrata anche in vivo, in un modello murino di trapianto extraepatico di isole pancreatiche. Topi diabetici che hanno ricevuto isole pancreatiche seminate sull’idrogelo di gelatina e trapiantato in sede peritoneale, sono stati infatti in grado di revertire il loro stato di iperglicemia in un tempo più breve di topi che hanno ricevuto le isole trapiantate liberamente nel peritoneo. In conclusione in questo lavoro di tesi, si è dimostrato come un supporto tridimensionale, nello specifico un idrogelo di gelatina reticolata, sia fondamentale per la sopravvivenza e la funzionalità delle isole pancreatiche sia in vivo che in vitro. L’idrogelo di gelatina ha, infatti, permesso di prevenire la perdita di isole pancreatiche preservandone il più possibile la funzionalità e aumentandone l'efficacia del trapianto stesso.
Enhancing islet transplantation and functionality by the use of complex polymer structures
MARZORATI, SIMONA
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the destruction of the producing insulin cells (ß-cells). The current clinical treatment for patients with T1DM consists of exogenous insulin; in addition, transplantation of allogenic islets by intraportal infusion offers a novel therapeutic approach. Despite its great potential and progressively advance in term of success rate, thanks to the advantage introduced by Edmonton Protocol (with steroid-free immunosuppression, ClinicalTrials.gov number, NCT00014911) the long term success of this procedure is not always guaranteed. Many variables can affect the success of transplant: i) isolation, purification, culture condition and procedures, ii) transplant procedure (activation of the coagulation cascade, Instant Blood Mediated Inflammatory Reaction, mechanical stress, release of cytokines and toxins). As result of this procedure, 75% of transplanted pancreatic islet tissue undergoes cell death soon after transplantation, even in the absence of a specific immune response. Above all this consideration, recreating the ß-cell niche and its 3D structure pre-transplant appears necessary to preserve function and survival of pancreatic islets. Recently, biomaterials have been proposed in order to overcome some of the problems related to the islet transplantation. In this context, the study of the thesis aims to identify and develop an innovative strategy based on the use of polymeric structures (cytoprotective and stimulating angiogenesis) to preserve the function of the islets and increase the success rate of the transplant. To achieve this purpose, the specific aims of the project are the following ones: I. a bibliography research to design the structure; II. identification a new polymeric materials with mechanical, chemico- physical characteristic suitable III. for the study; IV. development of the structures using the selected materials and evaluation of their chemico-physical V. and mechanical properties; VI. evaluation of the sterilization effects on the hydrogel structure; VII. evaluation of the in vitro interaction between the developed structures and the pancreatic islets (from rodent and human), assessing adhesion and functionality; VIII. assessment of the in vivo efficiency of the developed structures for pancreatic islet transplantation in a murine model. The results obtained by each step will be used to identify the optimal strategies for achieving the final aim of the project. A gelatin hydrogel recently patented in the Laboratory of Biomaterials of the Politecnico di Milano (PCT/EP2012/060277) was identified as an ideal candidate to support pancreatic islets. A first morphological, chemical-physical and mechanical characterization, was conducted and have been shown that this hydrogel could be an ideal candidate to support pancreatic islets culture. The proposed gelatin hydrogel shows a porous morphology, suitable for cells adhesion and engraftment; moreover its swelling property allows to load an ideal amount of pancreatic islets suitable for the transplant. The viscoelastic component and the ability to respond to mechanical stress make the proposed gelatin hydrogel an excellent carrier and scaffold to protect pancreatic islets during implant and a support for islets in vivo function. After the complete characterization of proposed hydrogel, in this thesis work the in vitro interaction between human and murine pancreatic islets it has been evaluated. Experiments to define the optimal culture conditions of pancreatic islets in the proposed 3D support were first conducted. The pancreatic islets were able to maintain their 3D structure once they were seeded into the proposed hydrogel and they were viable and in vitro able to respond to external stimuli. Pancreatic islets seeded into the gelatin hydrogel in vitro, were in fact able to answer to external changes in glucose concentrations, releasing insulin. With the intention to translate the proposed culture system in clinical practice, the effect of two of the widespread sterilization techniques in the biomedical field (ie, gas plasma and ethylene oxide), on the structure, morphological and mechanical characteristics of the proposed gelatin hydrogel were evaluated. In this thesis works, it was possible to demonstrate that the two explored sterilization technique doesn’t change the chemical-physical characteristics of the gelatin hydrogel and don’t influence negatively the interaction between gelatin hydrogel and islets. It was also possible to test in vivo the ability of the proposed gelatin hydrogel to support islets in an extrahepatic pancreatic islets transplantation murine model. In fact, diabetic mice that received pancreatic islets seeded into the gelatin hydrogel and transplanted in the peritoneal, were able to reverts their hyperglycaemic state in a shorter time compared to the mice that received the transplanted islets free in the peritoneum space. In conclusion, with this thesis works, it was possible to demonstrate that a three-dimensional support, specifically a cross-linked gelatin hydrogel, is crucial for the survival and function of pancreatic islets cells in vivo and in vitro. The proposed gelatin hydrogel allowed preventing pancreatic islets lost, preserving functionality and increasing the effectiveness of transplant.File | Dimensione | Formato | |
---|---|---|---|
2015_12_PhD_Marzorati.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
6.62 MB
Formato
Adobe PDF
|
6.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/113932