The measurement of very faint and ultra-fast optical signals in the near-infrared wavelength range, with picosecond timing resolution, proved to be an effective technique for many applications: characterization of new materials and single-photon sources, testing of optical fibers, laser ranging, secure transmission of secret keys in telecommunications, singlet-oxygen dosimetry in photodynamic therapy, lifetime measurement in time-resolved spectroscopy, non-invasive testing of VLSI circuits. Different single-photon detectors have been developed in the last years, but solid-state ones have the advantage of high reliability and robustness, besides their compactness. Single-Photon Avalanche Diodes (SPADs) are becoming increasingly widespread thanks to their good Photon Detection Efficiency (PDE), low timing jitter and low noise, with only moderate cooling requirements. In particular, silicon SPADs are sensitive up to 1100 nm, while InGaAs/InP SPADs are employed to detect photons from 900 nm to 1700 nm. This Ph.D. dissertation is focused on the design of novel and compact single-photon detection systems, mainly based on InGaAs/InP SPADs, capable to perform photon counting and photon timing measurements. The widespread use of these measurement techniques is limited by the size and the high power dissipation of currently available instrumentation, acceptable when used in a laboratory environment but intolerable where portability becomes a key requirement. Developed systems have been extensively characterized and successfully exploited in real-world settings. Outstanding performance have been registered, even when compared with complex and bulkier state-of-the-art detection systems. In particular, a preexistent single-photon detection module, developed at Politecnico di Milano, has been: i) improved, adding new functionalities; ii) employed to characterize two novel production runs of state-of-art InGaAs/InP SPADs; and iii) exploited in real applications, in collaboration with different national and international research groups. Thanks to its excellent performance, this module represents an enabling technology needed to perform innovative measurements. An integrated circuit able to operate SPADs in gated-mode has been deeply characterized: its fast quenching time leads to a significant reduction in afterpulsing probability, detrimental in InGaAs/InP SPADs; its sharp gate transitions (< 100 ps rise rime) can be used to effectively time filter incoming photons. Thanks to this integrated circuit, two extremely compact and high performance systems has been developed. Finally, a novel gigahertz gating technique for InGaAs/InP SPADs has been presented and validated. The characterization has shown excellent results, especially low afterpulsing probability (< 1.5%) even with very high count rate (up to 650 Mcps). Starting from the same configuration, a new compact and highly programmable module has been developed, enabling its exploitation in high-speed practical applications.
La misura di segnali ottici molto deboli ed estremamente veloci nella regione spettrale del vicino infrarosso, con risoluzione temporale del picosecondo, è una tecnica ad oggi adottata in molte applicazioni, tra le quali: caratterizzazione di nuovi materiali e di sorgenti di singoli fotoni, test di fibre ottiche, misure di distanza mediante laser, trasmissione sicura di chiavi per la crittografia, dosimetria dell’ossigeno in stato di singoletto per la terapia fotodinamica, misure di spettroscopia ottica risolte in tempo e il test non invasivo di circuiti VLSI. Diversi rivelatori di singoli fotoni sono stati sviluppati negli ultimi anni: quelli a stato solido hanno il grande vantaggio di essere affidabili e robusti, oltre ad essere molto compatti. Tra di essi, i fotorivelatori SPAD (Single-Photon Avalanche Diode) sono sempre più utilizzati, grazie alla loro buona efficienza quantica, al basso jitter temporale e al ridotto rumore, ottenibile senza l’impiego di temperature criogeniche. In particolare, gli SPAD in silicio sono sensibili fino a lunghezze d’onda di 1100 nm, mentre gli SPAD in InGaAs/InP sono impiegati per rivelare fotoni da 900 nm a 1700 nm. Questa tesi di dottorato è incentrata sul progetto di sistemi per la rivelazione di singoli fotoni, innovativi e compatti, mediante SPAD in InGaAs/InP. La diffusione su larga scala di questa tecnica di misura è principalmente limitata dall’ingombro e dall’alta dissipazione di potenza della strumentazione attualmente impiegata, accettabile se utilizzata in un laboratorio, ma intollerabile laddove la portabilità diventa un requisito fondamentale. I sistemi sviluppati in questa attività di ricerca, sono stati approfonditamente caratterizzati e impiegati con successo diversi esperimenti scientifici. Si sono raggiunte ottime prestazioni, spesso superiori allo stato dell’arte, costituito da sistemi di rivelazione più complessi e ingombranti. In particolare, un modulo per la rivelazione di singoli fotoni, sviluppato in precedenza presso il Politecnico di Milano, è stato: i) migliorato aggiungendo nuove funzionalità; ii) utilizzato per caratterizzare due nuove produzioni di SPAD in InGaAs/InP, allo stato dell’arte; iii) impiegato con successo in applicazioni reali, in collaborazione con diversi gruppi di ricerca nazionali ed internazionali. Grazie alle ottime prestazioni raggiunte, questo modulo rappresenta una tecnologia abilitante per molteplici applicazioni innovative. In seguito, è stato testato ed approfonditamente caratterizzato un circuito integrato in grado di operare gli SPAD in modalità gated: il suo veloce tempo di spegnimento della valanga comporta una riduzione significativa dell’afterpulsing, migliorando le prestazioni degli SPAD in InGaAs/InP; le transizioni estremamente veloci (< 100 ps) del segnale di abilitazione dello SPAD possono essere impiegate per filtrare in modo efficace i fotoni, in relazione al loro tempo di arrivo. In particolare, grazie all’utilizzo di questo circuito integrato, è stato possibile realizzare due sistemi estremamente compatti, dalle ottime prestazioni. Infine, è stata presentata e validata una nuova tecnica per l’abilitazione a gigahertz di SPAD in InGaAs/InP. La caratterizzazione ha evidenziato risultati eccellenti, in particolare bassa probabilità di afterpulsing (< 1.5%) unita ad un elevatissimo tasso massimo di conteggio (fino a 650 milioni di conteggi al secondo). Usando la stessa configurazione, un nuovo modulo compatto e altamente programmabile è stato sviluppato, permettendo lo sfruttamento di questa tecnica in applicazioni pratiche ad alta velocità.
Single-photon counting instrumentation for the near infrared wavelength range
RUGGERI, ALESSANDRO
Abstract
The measurement of very faint and ultra-fast optical signals in the near-infrared wavelength range, with picosecond timing resolution, proved to be an effective technique for many applications: characterization of new materials and single-photon sources, testing of optical fibers, laser ranging, secure transmission of secret keys in telecommunications, singlet-oxygen dosimetry in photodynamic therapy, lifetime measurement in time-resolved spectroscopy, non-invasive testing of VLSI circuits. Different single-photon detectors have been developed in the last years, but solid-state ones have the advantage of high reliability and robustness, besides their compactness. Single-Photon Avalanche Diodes (SPADs) are becoming increasingly widespread thanks to their good Photon Detection Efficiency (PDE), low timing jitter and low noise, with only moderate cooling requirements. In particular, silicon SPADs are sensitive up to 1100 nm, while InGaAs/InP SPADs are employed to detect photons from 900 nm to 1700 nm. This Ph.D. dissertation is focused on the design of novel and compact single-photon detection systems, mainly based on InGaAs/InP SPADs, capable to perform photon counting and photon timing measurements. The widespread use of these measurement techniques is limited by the size and the high power dissipation of currently available instrumentation, acceptable when used in a laboratory environment but intolerable where portability becomes a key requirement. Developed systems have been extensively characterized and successfully exploited in real-world settings. Outstanding performance have been registered, even when compared with complex and bulkier state-of-the-art detection systems. In particular, a preexistent single-photon detection module, developed at Politecnico di Milano, has been: i) improved, adding new functionalities; ii) employed to characterize two novel production runs of state-of-art InGaAs/InP SPADs; and iii) exploited in real applications, in collaboration with different national and international research groups. Thanks to its excellent performance, this module represents an enabling technology needed to perform innovative measurements. An integrated circuit able to operate SPADs in gated-mode has been deeply characterized: its fast quenching time leads to a significant reduction in afterpulsing probability, detrimental in InGaAs/InP SPADs; its sharp gate transitions (< 100 ps rise rime) can be used to effectively time filter incoming photons. Thanks to this integrated circuit, two extremely compact and high performance systems has been developed. Finally, a novel gigahertz gating technique for InGaAs/InP SPADs has been presented and validated. The characterization has shown excellent results, especially low afterpulsing probability (< 1.5%) even with very high count rate (up to 650 Mcps). Starting from the same configuration, a new compact and highly programmable module has been developed, enabling its exploitation in high-speed practical applications.File | Dimensione | Formato | |
---|---|---|---|
2015_12_Ruggeri.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
13.86 MB
Formato
Adobe PDF
|
13.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/113933