The development and extensive deployment of renewable energy sources repre- sent the main solution to the continuous increase of worldwide energy demand and carbon dioxide emissions. In particular, photovoltaic technology is provid- ing, and will provide, a great contribution to solve this problem. Nowadays, silicon represents the market-leading photovoltaic technology and will probably continue in this role for the near future as the technology contin- ues expanding while lowering its cost structure. However, the record e ciency of silicon solar cells has only improved from 25% to 25.6% in the last 15 years. Furthermore, the overall cost of solar power is shifting from a module dominated price to a balance-of-systems dominated one, hence, improving the e ciency of installed modules is becoming increasingly important. Tandem photovoltaic device technology represents the solution to overcome the intrinsic theoretical e ciency limits in order to further improve the modules e ciency. A tandem solar cell can be roughly de ned as a way to maximize the solar spectrum absorption by exploiting di erent band gap materials, stacked together to form a multijunction device, each one responsible for a certain por- tion of the solar spectrum. However, the high cost of common tandem solar cells, based on III-V compounds, signi cantly limits their commercial applica- tion. Nevertheless, thanks to the impressive record e ciencies ( 20%) and excep- tional material properties, the rise of metal-halide perovskite-based solar cells represent a major breakthrough for potential low cost, high e ciency tandem photovoltaic devices. Indeed, these materials are solution-processable large band gap compounds with small energetic losses. For these reasons, they are the ideal candidates to upgrade the performances of already developed photovoltaic tech- nologies (e.g. silicon and CIGS solar cells) by means of multijunction design approach. Hence, the aim of this work is to study and develop high e ciency perovskite-based tandem solar cells. In particular, a planar heterojunction per- ovskite solar cell has been realized and optimized in order to apply it as a top cell in a four-terminal and two-terminal tandem device. In the rst part of the project, an optimization process has been carried out, where two type of electron transport materials (TiO2 and C60) have been studied. Di erent thicknesses of evaporated lead iodide and methylammonium iodide concentrations have been compared as well. Eventually, it has been observed how the device performances are a ected by di erent perovskite annealing times and hole transport material concentrations. In particular, lead iodide has been evaporated in order to guar- antee a precise control of the perovskite lm thickness, particularly important for tandem devices, where the transmittance and current-matching condition can be tuned by changing the absorber lm thickness. The device performances have been studied using a solar simulator with fur- ther device characterizations based on UV-vis-NIR spectroscopy, XRD and SEM analyses. The optimized planar heterojunction perovskite solar cells can achieve a maximum of 12.9% as stabilized power output with a relatively thin absorber layer. 14 Subsequently, the perovskite-based device has been applied as a top cell in a four-terminal tandem device, where the bottom cell is represented by a HIT (Heterojunction with Intrinsic Thin layer) photovoltaic device. In order to do so, an indium tin oxide (ITO)-based transparent electrode has been evaporated on the top cell using a protective ITO nanoparticles-based bu er layer. The performances of ltered HIT bottom cell have been analysed using a solar simulator and the transmittance of the semi-transparent top cell has been ob- tained by means of integrating sphere UV-vis-NIR spectroscopy. Once ltered, the bottom cell e ciency decreases from 19.22% to 9.22% and the top cell dis- plays a maximum transmittance of 65% from 800 nm to 1000 nm. In the second part of the project, an n-type silicon/PEDOT:PSS solar cell has been realized and optimized in order to apply it as a potential bottom cell for a monolithically integrated tandem device, where the top solar cell is represented by the perovkiste-based one developed in the rst part of the thesis. In this phase of the project, surface photovoltage measurements have been carried out on the obtained devices, allowing to evaluate their open circuit voltage value. Therefore, during device fabrication procedure, an oxide-based passivation pro- cess has been compared to a molecular-based one in order to maximize the solar cell performances. Two additives (dimethyl sulfoxide and ethylene glycol) to PEDOT:PSS solution have been analysed in order to increase the organic layer electrical conductivity. The champion device displays an open circuit voltage of 610 mV. Subsequently, two di erent PEDOT:PSS surface functionalizations have been studied to realize an optimal intermediate layer for the two-terminal tandem cell. Once the best material and concentration for surface functionaliza- tion have been selected, a monolithically integrated tandem device, displaying an open circuit voltage of 1.49 V, has been developed. Kelvin probe technique has enabled to carry out surface photovoltage measure- ments on these solar cells.
Le energie rinnovabili sono forme di energia alternativa alle tradizionali fonti a base di combustibili fossili, il cui sviluppo può rappresentare la soluzione principale al continuo aumento della richiesta energetica globale e delle emissioni di CO2. In particolare, la tecnologia fotovoltaica, grazie alla quale l’energia solare incidente viene sfruttata per produrre energia elettrica, ha avuto, e avrà, un ruolo fondamentale per risolvere tale problema. Attualmente, le celle solari a base di silicio dominano il mercato del fotovoltaico e manterranno tale ruolo nel prossimo futuro, grazie alla continua espansione e riduzione dei costi. Tuttavia, l’efficienza record delle celle solari a base di silicio non ha mostrato un significativo miglioramento negli ultimi 15 anni, passando da 25% a 25.6%. Il costo complessivo dell’energia solare, in passato influenzato principalmente dal prezzo del modulo, ha un valore essenzialmente dominato dal costo balance of system (B.O.S), ovvero da un prezzo che comprende tutti gli elementi di installazione e collegamenti vari tra i moduli fotovoltaici. Per tale ragione, raggiungere maggiori efficienze risulta di estrema importanza, in quanto, con migliori prestazioni della cella solare, è possibile installare un numero inferiore di moduli fotovoltaici, ottenendo la medesima potenza prodotta ma diminuendo i costi. Le celle solari a multigiunzione, o tandem, rappresentano la strategia principale per aumentare, in maniera significativa, l’efficienza del dispositivo fotovoltaico. Una cella solare tandem può essere brevemente definita come un dispositivo in cui sono presenti diversi semiconduttori con differente band gap per garantire un maggior assorbimento dell’intero spettro solare, essendo ogni singola giunzione responsabile di una certa porzione della radiazione solare. Tuttavia, le tecnologie a multigiunzione impiegate attualmente, a base di composti dei gruppi III-V della tavola periodica, presentano un costo significativamente elevato, trovando applicazione, principalmente, nel campo aerospaziale. Ciononostante, grazie alle eccezionali efficienze e proprietà del materiale, lo sviluppo delle celle solari a base di perovskite può rappresentare un importante passo in avanti per la realizzazione di dispositivi tandem ad alta efficienza e basso costo. Infatti, questi materiali possono essere depositati tramite processi relativamente semplici e a basso costo. Inoltre, tali composti sono caratterizzati da un band gap relativamente elevato e ridotte perdite energetiche. Per queste ragioni, le celle solari a base di perovskite sono i candidati ideali per migliorare le prestazioni di dispositivi fotovoltaici a base di silicio o film sottile, tramite configurazione a multigiunzione. La presente tesi si focalizza sullo studio e realizzazione di dispositivi multigiunzione, a base di perovskite, ad alta efficienza e costo ridotto. In particolare, una cella solare a base di perovskite (architettura planar heterojunction) è stata sviluppata e ottimizzata al fine di applicarla come top cell in dispositivi tandem a quattro e due terminali. Nella prima parte del progetto, l’attenzione è stata focalizzata sull’ottimizzazione della cella solare; studiando due materiali per trasporto di elettroni (TiO2 e C60), analizzando differenti spessori di film evaporato di ioduro di piombo (PbI2) e diverse concentrazioni di ioduro di metilammonio (MAI). Infine, è stato osservato come le prestazioni del dispositivo sono influenzate da diversi tempi di annealing del film di perovskite e da diverse concentrazioni di materiale per trasporto di lacune. PbI2 è stato evaporato poiché è necessario un preciso controllo sullo spessore del film a base di perovskite, tale parametro è di fondamentale importanza nelle celle solari a multigiunzione al fine di ottimizzare la percentuale di radiazione trasmessa attraverso la top cell. I campioni ottenuti sono stati caratterizzati tramite simulatore solare, spettroscopia UV-vis-NIR, XRD e SEM. La miglior cella solare a base di perovskite ottenuta, può raggiungere valori di stabilized power output di 12.9% con un film di perovskite relativamente sottile. Successivamente, il dispositivo ottimizzato è stato applicato come top cell in una cella solare tandem a quattro terminali dove una cella a base di silicio (HIT solar cell) è stata utilizzata come bottom cell. Durante tale processo, ossido di indio-stagno (ITO), che funge da elettrodo trasparente, è stato depositato tramite sputtering su di uno strato protettivo a base di nanoparticelle di ITO. L’efficienza della bottom cell, una volta filtrata dalla top cell, assume un valore di 9.22%, partendo da un’efficienza di cella solare HIT non filtrata di 19.22%. La top cell presenta una picco di trasmittanza di circa 65%, nell’intervallo di lunghezza d’onda da 800 nm a 1000 nm. Nella seconda parte del progetto, una cella solare n-type silicon/PEDOT:PSS è stata realizzata e ottimizzata al fine di applicarla come bottom cell in un dispositivo tandem a due terminali, in cui la top cell è rappresentata dalla cella a base di perovskite sviluppata nella prima parte del progetto. In questa fase della tesi, sono state effettuate unicamente misure di fotovoltaggio di superficie tramite Kelvin Probe, stimando il valore di tensione a circuito aperto dei campioni. Durante la fase di fabbricazione, due processi di passivazione (oxide-based passivation e molecular-based passivation) sono stati studiati al fine di massimizzare le prestazioni della cella solare. Due additivi (glicole etilenico e dimetilsolfossido) per la soluzione di PEDOT:PSS sono stati analizzati al fine di migliorarne la conducibilità elettrica. Il miglior campione ottenuto presenta un valore di tensione a circuito aperto di circa 610 mV. Successivamente, due differenti funzionalizzazioni superficiali del film organico sono state confrontate al fine di ottenere uno strato di ricombinazione ottimale per la cella solare multigiunzione a due terminali. In conclusione, ottimizzato il processo di funzionalizzazione superficiale, è stata sviluppata una cella solare tandem monolitica con una tensione a circuito aperto di 1.49 V.
Study and realization of top and bottom solar cells for tandem perovskite devices
PISONI, STEFANO
2014/2015
Abstract
The development and extensive deployment of renewable energy sources repre- sent the main solution to the continuous increase of worldwide energy demand and carbon dioxide emissions. In particular, photovoltaic technology is provid- ing, and will provide, a great contribution to solve this problem. Nowadays, silicon represents the market-leading photovoltaic technology and will probably continue in this role for the near future as the technology contin- ues expanding while lowering its cost structure. However, the record e ciency of silicon solar cells has only improved from 25% to 25.6% in the last 15 years. Furthermore, the overall cost of solar power is shifting from a module dominated price to a balance-of-systems dominated one, hence, improving the e ciency of installed modules is becoming increasingly important. Tandem photovoltaic device technology represents the solution to overcome the intrinsic theoretical e ciency limits in order to further improve the modules e ciency. A tandem solar cell can be roughly de ned as a way to maximize the solar spectrum absorption by exploiting di erent band gap materials, stacked together to form a multijunction device, each one responsible for a certain por- tion of the solar spectrum. However, the high cost of common tandem solar cells, based on III-V compounds, signi cantly limits their commercial applica- tion. Nevertheless, thanks to the impressive record e ciencies ( 20%) and excep- tional material properties, the rise of metal-halide perovskite-based solar cells represent a major breakthrough for potential low cost, high e ciency tandem photovoltaic devices. Indeed, these materials are solution-processable large band gap compounds with small energetic losses. For these reasons, they are the ideal candidates to upgrade the performances of already developed photovoltaic tech- nologies (e.g. silicon and CIGS solar cells) by means of multijunction design approach. Hence, the aim of this work is to study and develop high e ciency perovskite-based tandem solar cells. In particular, a planar heterojunction per- ovskite solar cell has been realized and optimized in order to apply it as a top cell in a four-terminal and two-terminal tandem device. In the rst part of the project, an optimization process has been carried out, where two type of electron transport materials (TiO2 and C60) have been studied. Di erent thicknesses of evaporated lead iodide and methylammonium iodide concentrations have been compared as well. Eventually, it has been observed how the device performances are a ected by di erent perovskite annealing times and hole transport material concentrations. In particular, lead iodide has been evaporated in order to guar- antee a precise control of the perovskite lm thickness, particularly important for tandem devices, where the transmittance and current-matching condition can be tuned by changing the absorber lm thickness. The device performances have been studied using a solar simulator with fur- ther device characterizations based on UV-vis-NIR spectroscopy, XRD and SEM analyses. The optimized planar heterojunction perovskite solar cells can achieve a maximum of 12.9% as stabilized power output with a relatively thin absorber layer. 14 Subsequently, the perovskite-based device has been applied as a top cell in a four-terminal tandem device, where the bottom cell is represented by a HIT (Heterojunction with Intrinsic Thin layer) photovoltaic device. In order to do so, an indium tin oxide (ITO)-based transparent electrode has been evaporated on the top cell using a protective ITO nanoparticles-based bu er layer. The performances of ltered HIT bottom cell have been analysed using a solar simulator and the transmittance of the semi-transparent top cell has been ob- tained by means of integrating sphere UV-vis-NIR spectroscopy. Once ltered, the bottom cell e ciency decreases from 19.22% to 9.22% and the top cell dis- plays a maximum transmittance of 65% from 800 nm to 1000 nm. In the second part of the project, an n-type silicon/PEDOT:PSS solar cell has been realized and optimized in order to apply it as a potential bottom cell for a monolithically integrated tandem device, where the top solar cell is represented by the perovkiste-based one developed in the rst part of the thesis. In this phase of the project, surface photovoltage measurements have been carried out on the obtained devices, allowing to evaluate their open circuit voltage value. Therefore, during device fabrication procedure, an oxide-based passivation pro- cess has been compared to a molecular-based one in order to maximize the solar cell performances. Two additives (dimethyl sulfoxide and ethylene glycol) to PEDOT:PSS solution have been analysed in order to increase the organic layer electrical conductivity. The champion device displays an open circuit voltage of 610 mV. Subsequently, two di erent PEDOT:PSS surface functionalizations have been studied to realize an optimal intermediate layer for the two-terminal tandem cell. Once the best material and concentration for surface functionaliza- tion have been selected, a monolithically integrated tandem device, displaying an open circuit voltage of 1.49 V, has been developed. Kelvin probe technique has enabled to carry out surface photovoltage measure- ments on these solar cells.File | Dimensione | Formato | |
---|---|---|---|
2015_12_Pisoni.pdf
non accessibile
Descrizione: STUDY AND REALIZATION OF TOP AND BOTTOM SOLAR CELLS FOR TANDEM PEROVSKITE DEVICES
Dimensione
78.47 MB
Formato
Adobe PDF
|
78.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/115068