Nowadays, the so-called "deep brain stimulation" (DBS) is the most used method against the disorders induced by Parkinson's disease, and consists in sending electrical pulses to a particular area of the brain by means of a probe surgically implanted. Despite the effectiveness of this technique is well founded, it is not faultless, as this system gradually becomes less effective, requesting recalibration. For this reason, in recent years new techniques that enhance this therapy were studied, and one of the most innovative methods proposed is to implement an adaptive DBS that, depending on the variability of the symptoms, controls the stimulation parameters to be sent. This new treatment is called Adaptive Deep Brain Stimulation (aDBS) that, exploiting the principle of feedback, uses a neuronal signal closely correlated to the symptoms as a control variable of the system. This Master’s thesis work is about the design of an integrated circuit in CMOS 0.35μm technology which has to perform the readout of the neuronal signal and convert it into a bit stream that represents the frequency spectrum. The whole system is designed in order to maximize energy efficiency, since the final circuit must be implanted subcutaneously and powered by a non-rechargeable battery lasting at least 5 years. The final circuit, consisting of an analog chain and a 14-bit SAR ADC realized in fully-differential configuration followed by a digital module for the computation of an FFT, has a power consumption of less than 20μW, an integrated noise in the 1-50Hz bandwidth lower than 1μV and state of the art performances for this type of systems.
Ad oggi la cosiddetta “deep brain stimulation” (DBS) è la metodologia più utilizzata contro i sintomi del morbo di Parkinson, e consiste nell’invio di impulsi elettrici ad una particolare zona del cervello tramite una sonda innestata chirurgicamente. Nonostante l’efficacia di questa tecnica sia assodata, essa non è esente da difetti, in quanto questo sistema diviene via via sempre meno efficace con il passare del tempo richiedendo diverse ritarature e rientri in ospedale. Per tale motivo negli ultimi anni si sono studiate nuove tecniche che migliorassero sempre più questa terapia, e uno tra i metodi più innovativi proposti è quello di implementare una DBS adattativa che, in funzione delle variazioni sintomatiche dei pazienti, adatti i parametri dell’impulso inviato. Questo nuovo trattamento è denominato Adaptive Deep Brain Stimulation (aDBS) e, sfruttando il principio della retroazione, utilizza un segnale neuronale strettamente correlato ai sintomi come variabile di controllo del sistema. In questo lavoro di tesi si è realizzato un circuito integrato in tecnologia CMOS 0.35μm che ha lo scopo di effettuare il readout del segnale neuronale di controllo e di convertirlo in una sequenza di bit che ne rappresenti lo spettro in frequenza. Tutto il sistema è progettato nell’ottica di massimizzare l’efficienza energetica, poiché il circuito finale deve poter essere impiantato sottopelle ed alimentato attraverso una batteria non ricaricabile sostituita dopo un tempo non inferiore ai 5 anni. Il circuito finale, costituito da una catena analogica e un ADC SAR a 14 bit in configurazione fully-differential seguiti un modulo digitale per il calcolo di una FFT, presenta un consumo inferiore ai 20μW, un rumore integrato sulla banda tra 1 e 50Hz inferiore ad 1μV e prestazioni allo stato dell’arte per questa categoria di sistemi.
Sistema integrato di acquisizione ed elaborazione di segnali neuronali per la terapia del morbo di Parkinson tramite adaptive deep brain stimulation
SURACI, MICHELE;LAZZARINI, FRANCESCO
2014/2015
Abstract
Nowadays, the so-called "deep brain stimulation" (DBS) is the most used method against the disorders induced by Parkinson's disease, and consists in sending electrical pulses to a particular area of the brain by means of a probe surgically implanted. Despite the effectiveness of this technique is well founded, it is not faultless, as this system gradually becomes less effective, requesting recalibration. For this reason, in recent years new techniques that enhance this therapy were studied, and one of the most innovative methods proposed is to implement an adaptive DBS that, depending on the variability of the symptoms, controls the stimulation parameters to be sent. This new treatment is called Adaptive Deep Brain Stimulation (aDBS) that, exploiting the principle of feedback, uses a neuronal signal closely correlated to the symptoms as a control variable of the system. This Master’s thesis work is about the design of an integrated circuit in CMOS 0.35μm technology which has to perform the readout of the neuronal signal and convert it into a bit stream that represents the frequency spectrum. The whole system is designed in order to maximize energy efficiency, since the final circuit must be implanted subcutaneously and powered by a non-rechargeable battery lasting at least 5 years. The final circuit, consisting of an analog chain and a 14-bit SAR ADC realized in fully-differential configuration followed by a digital module for the computation of an FFT, has a power consumption of less than 20μW, an integrated noise in the 1-50Hz bandwidth lower than 1μV and state of the art performances for this type of systems.File | Dimensione | Formato | |
---|---|---|---|
2015_12_Lazzarini_Suraci.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
14.82 MB
Formato
Adobe PDF
|
14.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/115195