The aim of this work is to test and to improve performances of a numerical framework for CFD calculation coupled to kinetics (catalyticFOAM-multiRegion), in order to decrease the computational time. The catalyticFOAM-multiRegion solver has been developed in previous work of thesis [1]–[3] to model heterogeneous catalytic systems on the basis of the so called "first principle" approach, and it is able simulate catalytic reactive systems in arbitrarily complex geometries with detailed microkinetic description of the surface chemistry. This kind of software couples effectively computational fluid dynamic and chemical reactions, and it is able to describe the solid phase in detail through a multi region approach. Unfortunately, this methodology requires an excessive amount of time, and it is not feasible in industrial cases of larger dimensions. Firstly, main control parameters are investigated, then several methodologies are presented, in order to quicken the simulation run and achieve the steady state faster. The first method is the parallelization of the simulation, to split the computational load on several processors; the second one utilizes a low order model (1D heterogeneous) to quickly evaluate an approximate steady state, and this is used as the initial condition for catalyticFOAM-multiRegion; the third method lower the solid catalyst density, in order to decrease the thermal inertia; the fourth one employs an external algorithm (ISAT) to speed up the chemistry resolution. These methods are applied on a case of technological relevance (methane CPO, with different duct shape and with the addition of a diffusive barrier), with positive results.
L'obiettivo di questo lavoro di tesi è testare e migliorare l'utilizzo di un programma di risoluzione numerica (catalyticFOAM-multiRegion) per ridurne i tempi computazionali. Il software catalyticFOAM-multiRegion è stato sviluppato nei prece-denti lavori di tesi [1]–[3] per la descrizione di sistemi catalitici eterogenei at-traverso un approccio "first principle", in grado di simulare sistemi catalitici con geometrie arbitrarie e cinetiche complesse. Esso accoppia efficacemente la fluidodinamica computazionale con una descrizione microcinetica dettagliata, ed è in grado di descrivere nei dettagli anche la fase solida attraverso un approccio multi regione. Sfortunatamente questo tipo di metodologia impiega molto tempo per produrre risultati utili, e non è utilizzabile in casi industriali di dimensioni più estese. Per prima cosa si studiano i principali parametri di controllo del solver, poi si mostrano diversi metodi per velocizzare le simulazioni ed ottenere lo stato stazionario velocemente. ll primo è la parallelizzazione della simulazione, per distribuire il carico computazionale; il secondo usa un modello semplifi-cato (1D eterogeneo) per calcolare velocemente lo stato stazionario in ma-niera approssimata, e questo è usato come condizione iniziale per catalyticFOAM-multiRegion; il terzo metodo abbassa la densità del cataliz-zatore solido per ridurre l'inerzia termica del sistema; il quarto metodo sfrutta un algoritmo esterno (ISAT) per velocizzare la risoluzione della chimica. Questi metodi vengono applicati in un caso di rilevanza tecnologica (CPO del metano, con canali di forme diverse e forniti di una barriera diffusiva), con risultati positivi.
Optimization of multiregion simulations of catalytic reactors : an application to the CH4 partial oxidation on Rh
RESSEGOTTI, DAVIDE;KAZAZI, VESA
2014/2015
Abstract
The aim of this work is to test and to improve performances of a numerical framework for CFD calculation coupled to kinetics (catalyticFOAM-multiRegion), in order to decrease the computational time. The catalyticFOAM-multiRegion solver has been developed in previous work of thesis [1]–[3] to model heterogeneous catalytic systems on the basis of the so called "first principle" approach, and it is able simulate catalytic reactive systems in arbitrarily complex geometries with detailed microkinetic description of the surface chemistry. This kind of software couples effectively computational fluid dynamic and chemical reactions, and it is able to describe the solid phase in detail through a multi region approach. Unfortunately, this methodology requires an excessive amount of time, and it is not feasible in industrial cases of larger dimensions. Firstly, main control parameters are investigated, then several methodologies are presented, in order to quicken the simulation run and achieve the steady state faster. The first method is the parallelization of the simulation, to split the computational load on several processors; the second one utilizes a low order model (1D heterogeneous) to quickly evaluate an approximate steady state, and this is used as the initial condition for catalyticFOAM-multiRegion; the third method lower the solid catalyst density, in order to decrease the thermal inertia; the fourth one employs an external algorithm (ISAT) to speed up the chemistry resolution. These methods are applied on a case of technological relevance (methane CPO, with different duct shape and with the addition of a diffusive barrier), with positive results.File | Dimensione | Formato | |
---|---|---|---|
TesiFInale.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
14.28 MB
Formato
Adobe PDF
|
14.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/115344