Despite being the leading technology in the NOx abatement from lean burn engines, NH3 Selective Catalytic Reduction (SCR) still presents some fundamental issues that need to be investigated, such as the cold start behaviour. The reduction of NOx emissions at low temperature is a challenging issue and different effects have to be taken into account. In these conditions: i) the catalytic devices upstream of the SCR converter (such as the Diesel Oxidation Catalyst) are not operative, leading to significant hydrocarbon (HC) slip that impacts negatively the activity of the catalyst; ii) state of the art metal-exchanged zeolite catalysts are not active and therefore unable to reduce NOx; iii) the mechanism of the standard SCR reaction is not completely understood. Regarding HC poisoning, this has been so far investigated experimentally, but no kinetic analysis has been reported so far to our knowledge. In this thesis work, an original dual-site kinetic scheme has been developed and validated against experimental data provided by an industrial partner. To obtain the relevant kinetic parameters, a dedicated fitting routine based on the Genetic Algorithm has been developed. The model is able to reproduce quantitatively and qualitatively concentration profiles of the species involved in SCR process in presence of hydrocarbons, but more accurate data are necessary for further improvement. Concerning the SCR mechanisms, several transient response experiments have been carried out over different catalytic system in order to identify the reaction intermediates of standard SCR reaction. The investigation is based on a original chemical trapping technique, involving BaO-Al2O3 mixed with a metal promoted zeolite catalyst, The BaO material enabled us to block and identify otherwise reactive and unstable reaction intermediates. In addition, these experiments have highlighted also the practical possibility of trapping NOx at low temperature and release them when the temperature is higher (so that they can be effectively reduced by NH3), using for this purpose combined BaO/Al2O3 + M-zeolite systems as Passive NOx adsorbers (PNA).
Nonostante sia la tecnologia leader nell’abbattimento di NOx da motori a combustione magra, la riduzione catalitica selettiva (NH3-SCR) presenta ancora alcuni problemi fondamentali che necessitano di un’analisi ulteriore, come il comportamento durante l’avviamento a freddo. La riduzione delle emissioni di NOx a bassa temperatura (T < 200 °C) è una sfida difficoltosa e diversi effetti devono essere presi in considerazione. In queste condizioni: i) i dispositivi catalitici a monte del catalizzatore SCR, come il DOC (Diesel Oxidation Catalyst), non sono operativi, causando un significativa fuoriuscita di idrocarburi (HC), capaci di ridurre l’attività del catalizzatore; ii) i catalizzatori a base di zeolite sono poco attivi e non in grado di ridurre efficacemente NOx; iii) il meccanismo della reazione Standard SCR non è completamente compreso. Considerando l’avvelenamento da HC, esso è stato sinora oggetto di alcuni studi sperimentali, ma non di indagini cinetiche. In questo lavoro di tesi è stato sviluppato uno schema cinetico originale che ne prevede l’effetto sulle reazioni SCR: lo schema è stato validato con dati sperimentali forniti da un partner industriale. Per ottimizzare i parametri cinetici delle reazioni coinvolte è stata elaborata una procedura di fitting specifica in MATLAB, basata su algoritmi genetici. Il modello così ottenuto, sia pure ancora di natura preliminare, si è dimostrato in grado di riprodurre qualitativamente e quantitativamente gli effetti dovuti alla presenza di idrocarburi sulla attività DeNOx SCR in diverse condizioni operative. Le discrepanze riscontrate in alcuni casi tra i dati sperimentali e il risultato del fit sono probabilmente dovute a inconsistenze nei dati forniti, oppure ad effetti non ancora inclusi nel modello, come per esempio il coking. Nell’ambito dello studio dei meccanismi catalitici SCR di bassa temperatura, svariati esperimenti cinetici in fase gas sono stati condotti per identificare correttamente gli intermedi di reazione della reazione Standard SCR. L’analisi si è basata sull’utilizzo di una tecnica di intrappolamento chimico che sfrutta la presenza di BaO-Al2O3 in aggiunta al catalizzatore zeolitico promosso con metalli. Questo ha permesso di bloccare ed identificare intermedi di reazione molto reattivi e instabili. Inoltre, gli esperimenti condotti hanno evidenziato la possibilità di utilizzare, in linea di principio, questi sistemi combinati BaO/Al2O3 + M-zeolite come sistemi PNA (Passive NOx adsorbers) per accumulare NOx a bassa temperatura.
Studt of the low temperature challenges in NH3-SCR applications : hydrocarbon inhibition model development and investigation of the standard SCR mechanism over zeolite catalysts
FORLIN LISIGNOLI, LETIZIA;TURSI, ANTONIO
2014/2015
Abstract
Despite being the leading technology in the NOx abatement from lean burn engines, NH3 Selective Catalytic Reduction (SCR) still presents some fundamental issues that need to be investigated, such as the cold start behaviour. The reduction of NOx emissions at low temperature is a challenging issue and different effects have to be taken into account. In these conditions: i) the catalytic devices upstream of the SCR converter (such as the Diesel Oxidation Catalyst) are not operative, leading to significant hydrocarbon (HC) slip that impacts negatively the activity of the catalyst; ii) state of the art metal-exchanged zeolite catalysts are not active and therefore unable to reduce NOx; iii) the mechanism of the standard SCR reaction is not completely understood. Regarding HC poisoning, this has been so far investigated experimentally, but no kinetic analysis has been reported so far to our knowledge. In this thesis work, an original dual-site kinetic scheme has been developed and validated against experimental data provided by an industrial partner. To obtain the relevant kinetic parameters, a dedicated fitting routine based on the Genetic Algorithm has been developed. The model is able to reproduce quantitatively and qualitatively concentration profiles of the species involved in SCR process in presence of hydrocarbons, but more accurate data are necessary for further improvement. Concerning the SCR mechanisms, several transient response experiments have been carried out over different catalytic system in order to identify the reaction intermediates of standard SCR reaction. The investigation is based on a original chemical trapping technique, involving BaO-Al2O3 mixed with a metal promoted zeolite catalyst, The BaO material enabled us to block and identify otherwise reactive and unstable reaction intermediates. In addition, these experiments have highlighted also the practical possibility of trapping NOx at low temperature and release them when the temperature is higher (so that they can be effectively reduced by NH3), using for this purpose combined BaO/Al2O3 + M-zeolite systems as Passive NOx adsorbers (PNA).File | Dimensione | Formato | |
---|---|---|---|
2015_12_FORLIN LISIGNOLI_TURSI.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
6.4 MB
Formato
Adobe PDF
|
6.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/115441