Renewable resources present unique features that can contribute to the development of a novel generation of high performance materials offering economical/environmental advantages over its petroleum-based counterparts. The conjunction of all these factors constitutes, undoubtedly, a driving force to consolidate the utilisation of renewable materials in the development of new products. The concept of biorefinery falls within the approach of green chemistry and “integrated” process, avoiding the production of waste low value-products and recycling solvents used to extract all the components of biomass feedstock (closed loop systems). Lignin, the main natural source of aromatics, has been considered for a long time as a waste from pulp and paper industry and commonly used as fuel. However, it is a highly aromatic polymer with a variety of functional groups that make it a potential building-block for the formulation of dispersants, adhesives, coatings and surfactants or as antioxidant in plastics and rubbers. Because lignin composition and content in lignocellulose feedstock are influenced by the plant type and by the delignification process, the development of lignin-based materials is challenging and relatively limited. In this contest, the research described in this PhD thesis aims to study and explore the potential of this renewable resource, analysing at first the raw material structure and then investigating the incorporation of lignin into polymeric matrices, directly and after chemical modification. In the first part of this thesis, several lignin grades were evaluated considering aspects such as structure, thermal properties, solubility, molecular weight and reactivity. In addition, a strategy to improve lignin processability was evaluated, involving solvent fractionation. After the preliminary screening, unmodified lignins were tested as eco-friendly alternative to synthetic binders in a specific industrial application, namely the production of nonwovens (NW) made from recycled PET and used as roofing membranes. In this technology a key step is represented by the impregnation of the polyester fibers, nowadays performed with acrylic polymers crosslinked with melamine-formaldehyde resins, which are however toxic and suspect carcinogenic. The experimental work concerning the production of the impregnated NW was carried out an industrial pilot plant. The obtained prototypes were subjected to mechanical characterization at different temperatures and were shown to give good mechanical properties, in line with those achieved using conventional synthetic binders. Moreover, unmodified lignins were combined with polysaccharides such as starch and nanocellulose. In the first case, after a preliminary screening of different starch grades in terms of morphology, thermal and structural properties, a “green” crosslinking reaction with polycarboxylic acids was performed in order to give crosslinked starch materials. The addition of lignin allowed to overcome some of the main limitations related to the use of starch, namely its limited thermal stability and its highly hydrophilic nature. Also in this case, PET-based NWs were produced, impregnated with the lignin-starch based binder and characterized. In addition to improved thermal stability and resistance to water, these systems also exhibited good mechanical properties, thus providing a clear evidence of the possibility to partially replace formaldehyde in acrylic resins. The second part of the project, spent at Aalto University (Helsinki, Finland), was focused on the crosslinking reaction between lignin and nanocellulose in order to combine the broad chemical modification capability of nanocellulose with lignin properties. Finally, the utilization of lignin as a filler in natural rubbers was investigated as a green alternative to the usual carbon black. The third part of the work was focused on the chemical modifications of lignin. In detail, an easy approach to introduce new materials properties to the base lignin was developed through an esterification reaction in which a carboxylic moiety was attached to the lignin backbone, thus resulting in the formation of lignin-based precursor for the preparation of lignin-based materials. The newly developed crosslinked materials based on this lignin precursor were fully characterized in terms of solvent resistance, thermal stability and adhesive properties on different substrates. The effect of co-curing agents was evaluated in the attempt to obtain a highly performing lignin-based polyester coating to be used as a green alternative to the common employed oil-based systems.
I materiali da fonti rinnovabili presentano importanti caratteristiche che possono contribuire allo sviluppo di una nuova generazione di materiali con prestazioni uniche in ambito economico/ambientale rispetto alla loro controparte ottenuta da fonti non rinnovabili. L’insieme di tutti questi fattori rappresenta, indubbiamente, una forza motrice per consolidare l’utilizzo di materiali rinnovabili per lo sviluppo di nuovi prodotti. Il concetto di bioraffineria rientra nel progetto di “chimica verde” e di “processi integrati”, che evitano la produzione di sottoprodotti dal basso valore aggiunto e solventi di riciclo utilizzati per estrarre tutti i componenti della biomassa (closed-loop systems). La lignina, principale fonte naturale di aromatici, è stata considerata per moltissimi anni un rifiuto dell’industria cartaria e utilizzata principalmente come combustibile. Tuttavia, grazie alla sua struttura fortemente aromatica con numerosi gruppi funzionali presenti al suo interno, la lignina rappresenta un potenziale building-block per la realizzazione di adesivi, rivestimenti e surfattanti o antiossidante all’interno di plastiche o gomme. Tuttavia, lo sviluppo di materiali a base di lignina rappresenta ancor oggi una sfida ed è relativamente limitato a causa della forte dipendenza della composizione e del contenuto di lignina dal feedstock lignocellulosico e dal processo di delignificazione utilizzato. In questo contesto si inserisce la ricerca descritta in questa tesi di dottorato, i cui obiettivi sono quelli di studiare e esplorare i potenziali di questa fonte rinnovabile, analizzando dapprima la struttura dei materiali e successivamente valutando l’incorporazione della lignina all’interno di matrici polimeriche, direttamente e in seguito a modificazioni chimiche. Nella prima parte della tesi, diverse tipologie di lignine sono state caratterizzate in termini strutturali, di proprietà termiche, solubilità, peso molecolare e reattività. In particolare, è stato valutato il processo di frazionamento come possibile strategia per migliorare la processabilità della lignina. Dopo una preliminare analisi di lignine non modificate, queste ultime sono state testate come alternative eco-sostenibili ai più comuni leganti sintetici utilizzati in una specifica applicazione industriale, quale la produzione di non-tessuti costituiti da PET riciclato ed utilizzati nel settore del roofing. In questa tecnologia, un punto-chiave è costituito dall’impregnazione delle fibre di poliesteri, ad oggi ottenuta con l’utilizzo di resine acriliche reticolate per mezzo di melammine e formaldeide, che sono tuttavia considerate tossiche e sospette cancerogene. Il lavoro sperimentale inerente alla produzione e impregnazione di non-tessuti è stato svolto presso un impianto pilota industriale. I prototipi prodotti sono stati sottoposti ad una caratterizzazione meccanica a diverse temperature, mostrando buone proprietà meccaniche in linea con quelle ottenute utilizzando le convenzionali resine sintetiche. Un secondo punto della ricerca ha riguardato la combinazione di lignine non modificate con polisaccaridi, come ad esempio amidi e nanocellulosa. Nel primo caso, dopo una attenta caratterizzazione degli amidi in termini di morfologia, proprietà strutturali e termiche, è stata effettuata una reazione di reticolazione con acidi policarbossilici al fine di ottenere materiali reticolati a base di amido. L’aggiunta di lignina in questi materiali ha permesso di superare alcune delle principali limitazioni relative all’utilizzo del solo amido, quali la limitata stabilità termica e la sua forte natura idrofilica. Come già fatto in precedenza, sono stati prodotti i non-tessuti e impregnati con amidi e lignine reticolati con acidi policarbossilici. Le caratterizzazioni effettuate hanno permesso di evidenziare una migliore stabilità termica, resistenza all’acqua e buone proprietà meccaniche, dimostrando cosi la possibilità di sostituire le resine acriliche contenenti formaldeide. La seconda parte del progetto di dottorato, trascorso presso la Aalto University (Hensinki, Finlandia), ha riguardato la reazione di reticolazione tra lignina e nanocellulosa , al fine di combinare la grande capacità della nanocellulosa di essere modificata con le proprietà della lignina. Infine, è stata valutato l’utilizzo della lignina all’interno di gomme naturali come filler eco-sostenibile e alternativo al carbon black solitamente utilizzato. Nella terza parte di questa tesi di dottorato sono state effettuate le modificazioni chimiche sulla lignina. In dettaglio, la reazione di esterificazione ha rappresentato un modo semplice di apportare nuove proprietà al materiale a base di lignina. Grazie a tale reazione è stato possibile inserire una quantità carbossilica al backbone della lignina, portando in tal modo alla formazione di un addotto a base di lignina per la preparazione di materiali a più alto valore aggiunto. Questi nuovi addotti a base di lignina sono stati completamente caratterizzati in termini di resistenza al solvente, stabilità termica e proprietà adesive su differenti substrati. L’effetto di un agente co-reticolante è stato infine valutato con l’obiettivo ultimo di ottenere poliesteri a base lignina da utilizzare come alternativa eco-sostenibile dei più comuni sistemi a base petrolifera.
Lignin as renewable material for industrial applications
SCARICA, CARMELA
Abstract
Renewable resources present unique features that can contribute to the development of a novel generation of high performance materials offering economical/environmental advantages over its petroleum-based counterparts. The conjunction of all these factors constitutes, undoubtedly, a driving force to consolidate the utilisation of renewable materials in the development of new products. The concept of biorefinery falls within the approach of green chemistry and “integrated” process, avoiding the production of waste low value-products and recycling solvents used to extract all the components of biomass feedstock (closed loop systems). Lignin, the main natural source of aromatics, has been considered for a long time as a waste from pulp and paper industry and commonly used as fuel. However, it is a highly aromatic polymer with a variety of functional groups that make it a potential building-block for the formulation of dispersants, adhesives, coatings and surfactants or as antioxidant in plastics and rubbers. Because lignin composition and content in lignocellulose feedstock are influenced by the plant type and by the delignification process, the development of lignin-based materials is challenging and relatively limited. In this contest, the research described in this PhD thesis aims to study and explore the potential of this renewable resource, analysing at first the raw material structure and then investigating the incorporation of lignin into polymeric matrices, directly and after chemical modification. In the first part of this thesis, several lignin grades were evaluated considering aspects such as structure, thermal properties, solubility, molecular weight and reactivity. In addition, a strategy to improve lignin processability was evaluated, involving solvent fractionation. After the preliminary screening, unmodified lignins were tested as eco-friendly alternative to synthetic binders in a specific industrial application, namely the production of nonwovens (NW) made from recycled PET and used as roofing membranes. In this technology a key step is represented by the impregnation of the polyester fibers, nowadays performed with acrylic polymers crosslinked with melamine-formaldehyde resins, which are however toxic and suspect carcinogenic. The experimental work concerning the production of the impregnated NW was carried out an industrial pilot plant. The obtained prototypes were subjected to mechanical characterization at different temperatures and were shown to give good mechanical properties, in line with those achieved using conventional synthetic binders. Moreover, unmodified lignins were combined with polysaccharides such as starch and nanocellulose. In the first case, after a preliminary screening of different starch grades in terms of morphology, thermal and structural properties, a “green” crosslinking reaction with polycarboxylic acids was performed in order to give crosslinked starch materials. The addition of lignin allowed to overcome some of the main limitations related to the use of starch, namely its limited thermal stability and its highly hydrophilic nature. Also in this case, PET-based NWs were produced, impregnated with the lignin-starch based binder and characterized. In addition to improved thermal stability and resistance to water, these systems also exhibited good mechanical properties, thus providing a clear evidence of the possibility to partially replace formaldehyde in acrylic resins. The second part of the project, spent at Aalto University (Helsinki, Finland), was focused on the crosslinking reaction between lignin and nanocellulose in order to combine the broad chemical modification capability of nanocellulose with lignin properties. Finally, the utilization of lignin as a filler in natural rubbers was investigated as a green alternative to the usual carbon black. The third part of the work was focused on the chemical modifications of lignin. In detail, an easy approach to introduce new materials properties to the base lignin was developed through an esterification reaction in which a carboxylic moiety was attached to the lignin backbone, thus resulting in the formation of lignin-based precursor for the preparation of lignin-based materials. The newly developed crosslinked materials based on this lignin precursor were fully characterized in terms of solvent resistance, thermal stability and adhesive properties on different substrates. The effect of co-curing agents was evaluated in the attempt to obtain a highly performing lignin-based polyester coating to be used as a green alternative to the common employed oil-based systems.File | Dimensione | Formato | |
---|---|---|---|
2016_01_PhD_Scarica.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
10.99 MB
Formato
Adobe PDF
|
10.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/116553