Paraglider sail (canopy) consists of a series of flexible boxes pressurized by special openings located at the leading edge, in the region near to the front stagnation point. Therefore, in order to avoid the deflation of the wing, the pressure inside the sail must be above a certain threshold. To investigate this problem it has been considered an airfoil with a typical paraglider geometry equipped with air intakes. The aerodynamic behavior was determined performing experimental, Xfoil and CFD numerical analysis. Hollow models were made by a rapid prototyping and have been tested in a wind tunnel, measuring forces and moments on the profile and the pressure inside the canopy. Making different considerations, concerning the relationship between the internal pressure of the canopy and the upstream pressure gradient of the inlet, the results regarding the airfoil equipped with inlets have been compared with another airfoil with same geometries but without inlets. The pressure inside the airfoil has been satisfactorily related with numerical estimations and, subsequently, a new airfoil shape, with a different configuration of the inlets, has been developed by using an optimization process based on a multi-objective genetic algorithm. The new shape optimizes the internal pressure, especially at low angle of attack, according to the fact that the internal pressurization is a fundamental for safety flight requirements.
L’ala del parapendio consiste in una serie di cassoni flessibili pressurizzati grazie a delle aperture posizionate sul bordo d’attacco, nella regione vicino al punto di ristagno anteriore. Di conseguenza, per evitare la perdita di rigidezza della vela, la pressione interna deve rimanere sopra una certa soglia. Per investigare il problema è stato considerato un profilo alare dotato delle tipiche prese d’aria. Le caratteristiche aerodinamiche sono state determinate mediante prove sperimentali ed analisi numeriche mediante Xfoil o CFD. Il modello cavo, prodotto mediante prototipazione rapida, è stato provato in galleria del vento, misurando forze e momenti del profilo e la pressione interna. Ponendo diverse considerazioni riguardo la relazione tra la pressione interna alla vela e il gradiente di pressione a monte della presa d’aria, i risultati del profilo dotato di prese d’aria sono stati comparati con un altro profilo con la stessa geometria ma senza presa d’aria. La pressione interna al profilo è stata correlata alle previsioni numeriche in modo soddisfacente. In seguito, mediante un’ottimizzazione di tipo genetico multi-obiettivo, è stata sviluppata una nuova geometria di profilo alare, con differente configurazione delle prese d’aria. La nuova forma ottimizza la pressione interna, specialmente a bassi angoli d’incidenza, essendo un requisito fondamentale per la sicurezza del volo.
Analisi delle caratteristiche aerodinamiche e ottimizzazione di un profilo per parapendio
SAVORGNAN, FEDERICO
2014/2015
Abstract
Paraglider sail (canopy) consists of a series of flexible boxes pressurized by special openings located at the leading edge, in the region near to the front stagnation point. Therefore, in order to avoid the deflation of the wing, the pressure inside the sail must be above a certain threshold. To investigate this problem it has been considered an airfoil with a typical paraglider geometry equipped with air intakes. The aerodynamic behavior was determined performing experimental, Xfoil and CFD numerical analysis. Hollow models were made by a rapid prototyping and have been tested in a wind tunnel, measuring forces and moments on the profile and the pressure inside the canopy. Making different considerations, concerning the relationship between the internal pressure of the canopy and the upstream pressure gradient of the inlet, the results regarding the airfoil equipped with inlets have been compared with another airfoil with same geometries but without inlets. The pressure inside the airfoil has been satisfactorily related with numerical estimations and, subsequently, a new airfoil shape, with a different configuration of the inlets, has been developed by using an optimization process based on a multi-objective genetic algorithm. The new shape optimizes the internal pressure, especially at low angle of attack, according to the fact that the internal pressurization is a fundamental for safety flight requirements.File | Dimensione | Formato | |
---|---|---|---|
Balzarotti-Savorgnan3.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
16.29 MB
Formato
Adobe PDF
|
16.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/116583