In a vapor compression cycle the compressor needs oil employment in order to prevent surface-to-surface contact, remove heat, provide sealing, keep out contaminants and dispose of debris created by wear. Although most of the oil remains in the compressor, a small amount, which ranges from 0.5 to 3 percent of the total refrigerant flow rate circulating into the system, escapes the oil separator after the compressor and circulates throughout the cycle. Furthermore, the lubricant can accumulate inside the heat exchanger components, causing an insufficient oil return to the compressor, and then a lack of lubrication. In heat exchangers, the oil addition effects are undesired yet unavoidable: the presence of oil causes an increase of the pressure drop and a penalization of the whole heat transfer process. The aim of this work is to analyze the oil retention and its effects on heat transfer rate and pressure drop in microchannel type evaporators. The unique feature consists of providing comparison data between a well-known and highly employed refrigerant, such as R410A, and its possible low Global Warming Potential replacements, DR5A, R32 and R1234yf. The oil effects are evaluated comparing both the heat transfer capacity and the pressure drop after oil addition with the ones of the corresponding pure refrigerant test having the same total mass flow rate. This approach allows to address all the variations to the lubricant replacing refrigerant inside the evaporator. The extensive experiments and simulations demonstrate that the oil addition always penalizes the microchannel heat exchanger performances over the wide range of conditions tested. The oil retention, the heat transfer degradation and the pressure drop increase are proportional to the oil mass fraction, representative of the ratio between the lubricant and refrigerant mass flow rates entering the coil.
In un ciclo a compressione di vapore, il compressore necessita l’utilizzo di olio per evitare il contatto fra le superfici rotanti, rimuovere il calore in eccesso ed eliminare i contaminanti e i detriti causati dall’usura. Sebbene gran parte dell’olio lubrificante rimanga all’interno del compressore, un piccolo quantitativo, che varia fra lo 0.5 e il 3 per cento della portata totale di refrigerante del sistema, riesce a scappare dal separatore posto a valle del compressore e circola attraverso l’intero sistema. Inoltre, l’accumulo d’olio all’interno degli scambiatori di calore può causare un insufficiente ritorno di olio al compressore e una carenza di lubrificazione. Gli effetti correlati all’aggiunta di olio lubrificante negli scambiatori di calore sono negativi ma al tempo stesso inevitabili: la presenza di olio determina un incremento delle perdite di carico e una penalizzazione dell’intero processo di scambio termico. L’obiettivo del presente lavoro è analizzare la ritenzione dell’olio lubrificante e i suoi effetti in termini di scambio termico e perdite di carico in evaporatori a micro canali. Il contributo originale consiste nel confrontare le prestazioni di un fluido refrigerante ben noto e altamente impiegato come l’R410A e i suoi possibili sostituti a basso potenziale di riscaldamento globale, DR5A, R32 e R1234yf. Gli effetti dovuti alla presenza di olio lubrificante sono valutati confrontando i valori di potenza scambiata e cadute di pressione con olio in circolo e quelli misurati nel caso di refrigerante puro. Mantenendo costante la portata massica totale, è possibile indirizzare tutte le variazione all’olio lubrificante che sostituisce il refrigerante puro. Il lavoro sperimentale e di modellazione numerica dimostra che l’aggiunta di olio penalizza sempre le prestazioni dello scambiatore di calore a micro canali in tutte le condizioni di lavoro analizzate. La ritenzione dell’olio lubrificante, la penalizzazione dello scambio termico e l’incremento delle perdite di carico sono direttamente proporzionali alla frazione massica d’olio, parametro rappresentativo del rapporto fra le portate massiche di olio e refrigerante in ingresso allo scambiatore di calore.
Experimental analysis and modeling of oil retention effects on heat transfer and pressure drop during evaporation of low GWP refrigerants in microchannel heat exchangers
ANDRES, CARLO
2014/2015
Abstract
In a vapor compression cycle the compressor needs oil employment in order to prevent surface-to-surface contact, remove heat, provide sealing, keep out contaminants and dispose of debris created by wear. Although most of the oil remains in the compressor, a small amount, which ranges from 0.5 to 3 percent of the total refrigerant flow rate circulating into the system, escapes the oil separator after the compressor and circulates throughout the cycle. Furthermore, the lubricant can accumulate inside the heat exchanger components, causing an insufficient oil return to the compressor, and then a lack of lubrication. In heat exchangers, the oil addition effects are undesired yet unavoidable: the presence of oil causes an increase of the pressure drop and a penalization of the whole heat transfer process. The aim of this work is to analyze the oil retention and its effects on heat transfer rate and pressure drop in microchannel type evaporators. The unique feature consists of providing comparison data between a well-known and highly employed refrigerant, such as R410A, and its possible low Global Warming Potential replacements, DR5A, R32 and R1234yf. The oil effects are evaluated comparing both the heat transfer capacity and the pressure drop after oil addition with the ones of the corresponding pure refrigerant test having the same total mass flow rate. This approach allows to address all the variations to the lubricant replacing refrigerant inside the evaporator. The extensive experiments and simulations demonstrate that the oil addition always penalizes the microchannel heat exchanger performances over the wide range of conditions tested. The oil retention, the heat transfer degradation and the pressure drop increase are proportional to the oil mass fraction, representative of the ratio between the lubricant and refrigerant mass flow rates entering the coil.| File | Dimensione | Formato | |
|---|---|---|---|
|
2015_12_Andres.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/116806