The trend to obtain more and more faster desktop or notebook computers in terms of capability of calculation and the other side, the trend to reduce the dimensions of portable computers, brings the electronic devices that work at high frequencies to discharge high thermal fluxes in relationship with the surfaces of heat exchangers. Therefore it is necessary developing and designing new cooling systems. In the present work, there is an overview of actual and more used cooling technologies for computer processors. As it is shown later, every technology presents a compression system and for this reason there is an extensive bibliographic review to know and understanding what are the actual compression technologies at scale dimension of centimeters or millimeters today in the world. It is also described the cooling cycle in which every compressor type is integrated. The compression technologies described are: linear and reciprocating compressors, membrane compressors in which there are piezoelectric, thermopneumatic, electrostatic and electromagnetic membrane actuation systems; there are also reverse Stirling engines and centrifugal compressors. Among all this technologies the author choose the linear compressor integrated in a reverse Rankine cycle in which flows the refrigerant fluid R134a. It is built a numerical model to calculate the performances. By the analysis on the energy losses it is shown that thermal losses are many times bigger than other losses, so the trend of the compressor efficiency is linked to the trend of thermal losses. Instead leakage and friction losses are very low. The performances of the refrigeration system are investigated varying some design parameters like stroke to diameter ratio and diameter of the piston. It is chosen the asset with higher COP among them that present an evaporation thermal power of 50 W. The optimal compression chamber has a stroke to diameter ratio of 0.47 and the diameter of the piston of 1.2 cm, the global compressor efficiency value is about 61 %, the COP value is 1.84 and the evaporation fluid temperature of 285 K. The global compressor casing is long 8-10 cm and its diameter is about 2 cm.
La tendenza ad avere desktop o notebook computer sempre più veloci ed efficienti in termini di capacità di calcolo e, dall’altra parte, la tendenza a ridurne sempre di più le dimensioni, porta ad avere componenti elettronici che lavorano ad elevate frequenze con grandi potenze termiche da dissipare in rapporto alle superfici di scambio termico. Esiste quindi l’opportunità per lo sviluppo e la progettazione di nuove tecnologie di raffreddamento o refrigerazione. Nella presente trattazione si riporta una breve panoramica delle attuali tecnologie di raffreddamento per i processori di componenti elettronici. Visto che ogni tecnologia presenta un sistema di compressione, viene effettuata un’approfondita rassegna bibliografica per comprendere quali sono le attuali tecnologie di compressione esistenti aventi le dimensioni dei centimetri o millimetri, descrivendo anche il sistema di raffreddamento nel quale sono integrate. Vengono studiati i compressori a pistone tradizionali e lineari, i compressori a membrana piezoelettrici, elettrostatici, elettromagnetici e termopneumatici, il motore Stirling sfruttato in modo inverso e il compressore centrifugo. Tra le varie tecnologie si sceglie il compressore lineare integrato in un ciclo Rankine inverso. Si costruisce un modello numerico, implementato in Excel, che simuli le varie fasi del ciclo di compressione e del ciclo frigorifero calcolandone le prestazioni. Dall’analisi delle perdite energetiche si rivela che quelle termiche prevalgono sulle altre e che influenzano maggiormente l’andamento del rendimento del compressore. Invece le perdite per attrito e per trafilamento sono molto ridotte. Vengono poi analizzate le prestazioni dell’impianto al variare del rapporto corsa-alesaggio e del diametro del pistone scegliendo il caso con COP più elevato che asporti una potenza termica di 50 W all’evaporatore. La camera di compressione ottimale ha un diametro di 1.2 cm e un rapporto corsa-alesaggio di 0.47, il rendimento del compressore è del 61%, il COP è pari a 1.84 e la temperatura del fluido nell’evaporatore di 285 K . Le dimensioni globali del compressore sono di circa 2 cm di diametro per 8-10 cm di lunghezza.
Studio numerico di un compressore alternativo per la refrigerazione di componenti elettronici
TOMASONI, ENRICO
2014/2015
Abstract
The trend to obtain more and more faster desktop or notebook computers in terms of capability of calculation and the other side, the trend to reduce the dimensions of portable computers, brings the electronic devices that work at high frequencies to discharge high thermal fluxes in relationship with the surfaces of heat exchangers. Therefore it is necessary developing and designing new cooling systems. In the present work, there is an overview of actual and more used cooling technologies for computer processors. As it is shown later, every technology presents a compression system and for this reason there is an extensive bibliographic review to know and understanding what are the actual compression technologies at scale dimension of centimeters or millimeters today in the world. It is also described the cooling cycle in which every compressor type is integrated. The compression technologies described are: linear and reciprocating compressors, membrane compressors in which there are piezoelectric, thermopneumatic, electrostatic and electromagnetic membrane actuation systems; there are also reverse Stirling engines and centrifugal compressors. Among all this technologies the author choose the linear compressor integrated in a reverse Rankine cycle in which flows the refrigerant fluid R134a. It is built a numerical model to calculate the performances. By the analysis on the energy losses it is shown that thermal losses are many times bigger than other losses, so the trend of the compressor efficiency is linked to the trend of thermal losses. Instead leakage and friction losses are very low. The performances of the refrigeration system are investigated varying some design parameters like stroke to diameter ratio and diameter of the piston. It is chosen the asset with higher COP among them that present an evaporation thermal power of 50 W. The optimal compression chamber has a stroke to diameter ratio of 0.47 and the diameter of the piston of 1.2 cm, the global compressor efficiency value is about 61 %, the COP value is 1.84 and the evaporation fluid temperature of 285 K. The global compressor casing is long 8-10 cm and its diameter is about 2 cm.File | Dimensione | Formato | |
---|---|---|---|
2015_12_Tomasoni.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
7.09 MB
Formato
Adobe PDF
|
7.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/116917