In recent years, research on conjugated polymers started to advance its frontiers beyond the applications in light emitting diodes, photovoltaic cells and transistors, facing new challenges in the fields of photoelectrochemistry and biology. A plethora of novel possible applications of organic semiconductors (OSCs) have been reported, including organic photoelectrochemical cells (OPECs), organic field effect transistors (OFETs) for elicitation and recording of cellular activity, water-gated organic field effect transistors (WGOFETs) for bio and environmental sensing, and photo-active interfaces with living cells and tissues. The common denominator of all these proof-of-concept devices is the direct contact between the active polymer surface and a liquid component, which in most cases is an aqueous solution. The aim of this work is to provide a detailed chemical-physical, spectroscopic, optoelectronic and electrochemical characterization of different polymer/liquid hybrid interfaces. First, we report a comprehensive study of chemical-physical effects occurring in thin films of regioregular poly(3-hexylthiophene) (rr-P3HT), the election material for such applications, exposed to different environmental conditions. In particular, its contact with water and possible relative changes in materials are studied in deep with optical spectroscopy methods, allowing to establish that the bulk optoelectronic properties of OSCs are not seriously affected. In addition, Sum-Frequency Generation Vibrational Spectroscopy, a surface-specific technique compatible with electrochemical/biological conditions, demonstrates that the surface of thin films rr-P3HT undergoes a molecular reorientation when exposed to aqueous electrolytes, with respect to their surface structure in air. Continuous Wave Photo-induced Absorption measurements reveal that the charge photogeneration for the rr-P3HT when blended with a typical donor component, i.e. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), is preserved in both aqueous and acetonitrile-based solutions. Moreover, we present a thorough electrochemical characterization of different hybrid polymer/electrolyte interfaces, focusing on capacitive and faradaic processes occurring at the polymer surface upon illumination and/or applying an external bias. Based on this knowledge, we explore organic semiconducting materials in two different application fields. (i) Biological applications. The possibility to use P3HT films as artificial photoreceptor layers, capable to restore light sensitivity in blind retinas, was recently reported by our group. The acquired knowledge of the polymer/electrolyte interface represents the necessary starting point for the complete understanding of the main mechanisms occurring at the interface between the conducting polymer and the living cells/tissues, and for their further exploitation in implantable devices. In addition, we develop different architectures of WGOFETs, which are playing an increasingly important role as sensors for biomedical and environmental applications. By employing different polythiophene derivatives as p-type materials we highlight the specific role played by the double-layer capacitance at the semiconductor-electrolyte interfaces, as determined by a specific orientation of the polymer alkyl-side chains at the interface with water. In addition, we report the first demonstration of three working n-type WGOFETs, based on different materials, namely bithiophene-naphthalene diimide copolymer (PNDIT2), selenophene-vinylene-selenophene-naphthalene diimide copolymer (PNDISVS) and PCBM. The opportunity to employ n-type materials will certainly open up new perspectives in organic bioelectronics devices. (ii) Energetic applications. We establish conjugated polymers as a promising class of materials for OPECs for sensing applications and fuel cells. In particular we demonstrate the possibility to use OSCs to develop a highly sensitive photoelectrochemical dissolved oxygen (DO) sensor as well as efficient hybrid organic-inorganic photocathodes for aqueous H2 production. Our findings suggest paths for future developments, offering a new lever for the sustainable and low-cost H2 production.
Negli ultimi anni, la ricerca riguardante i polimeri coniugati ha iniziato ad espandere le sue frontiere oltre le più usuali applicazioni rappresentate da light emitting diode (LED), celle fotovoltaiche e transistor, trovando nuove sfide nel campo della elettrochimica a della biologia. Una pletora di nuove possibili applicazioni dei semiconduttori organici (OSC) è stata recentemente presentata, includendo celle fotoelettrochimiche organiche (OPEC), field effect transistors organici (OFET) per la stimolazione e la registrazione dell’attività cellulare, water-gated field effect transistors organici (WGOFET) per biosensing e rilevamento ambientale, e interfacce fotoattive con cellule e tessuti vivi. Il comun denominatore di tutti questi dispositivi proof-of-concept è il contatto diretto tra la superficie attiva del polimero ed un componente liquido, che nella maggior parte dei casi è una soluzione acquosa. Lo scopo di questo lavoro è di fornire una dettagliata caratterizzazione chimico-fisica, spettroscopica, optoelettronica ed elettrochimica di differenti interfacce ibride polimero/liquido. Inizialmente riportiamo uno studio comprensivo degli effetti chimici-fisici che accadono in film sottili di regioregular poly(3-hexylthiophene) (rr-P3HT), il materiale più rappresentativo per tali applicazioni, esposto a differenti condizioni ambientali. In particolare, il suo contatto con l’acqua ed i possibili cambiamenti relativi nel materiale sono studiati in dettaglio con metodi di spettroscopia ottica, permettendo di stabilire che le proprietà optoelettroniche di bulk del OSC non sono seriamente influenzate. Inoltre, spettroscopia vibrazionale di sum-frequency generation, una tecnica sensitive alla superficie compatibile con condizioni electtrochimiche e biologiche, dimostra che la superficie del film sottile rr-P3HT subisce un riorientamento molecolare quando esposta ad un elettrolita acquoso, rispetto la sua superficie esposta all’aria. Misure di assorbimento foto-indotto rivelano che la fotogenerazione di carica per il blend rr-P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) è preservato sia in soluzione acquose che in acetontrile. Inoltre, riportiamo una accurata caratterizzazione elettrochimica di differenti interfacce ibride polimero/elettrolita, focalizzandoci sui processi capacitive e faradici riguardanti la superficie del polimero sotto illuminazione e/o in presenza di un potenziale esterno applicato. Sulla base di tale conoscenza, esploriamo i semiconduttori organici in due differenti campi di applicazione. (i) Applicazioni biologiche. La possibilità di usare film di P3HT come strato fotorecettore artificiale, capace di ristorare la visione in retine ceche, è stata recentemente riportata dal nostro gruppo di ricerca. La conoscenza acquisita riguardo l’interfaccia polimero/elettrolita rappresenta il punto di partenza necessario per una completa comprensione dei meccanismi che si verificano all’interfaccia tra il polimero semiconduttore e il tessuto cellulare, e il loro possibile sfruttamento in dispositivi impiantabili. Inoltre, abbiamo sviluppato architetture differenti di WGOFET, le quali stanno assumendo un ruolo importante come sensori per applicazioni biomediche e ambientali. Attraverso l’utilizzo di derivati del polythiophene come materiali p-type evidenziamo il ruolo specifico della capacità di double-layer alle interfacce semiconduttore elettrolita, così come determinate dalla specifica orientazione delle catene alchiliche laterali del polimetro all’interfaccia con l’acqua. Inoltre, riportiamo la prima dimostrazione di tre n-type WGOFET operativi, realizzati con differenti materiali, ovvero bithiophene-naphthalene diimide copolymer (PNDIT2), selenophene-vinylene-selenophene-naphthalene diimide copolymer (PNDISVS) and PCBM. L’opportunità di utilizzare materiali n-type aprirà sicuramente nuove prospettive nel campo dei dispositivi bioelettronici organici. (ii) Applicazioni energetiche. Dimostriamo i polimeri coniugati come promettente classe di materiali per OPEC destinate ad applicazioni sensoriali e celle a combustibile (fuel cell). In particolare, dimostriamo la possibilità di utilizzare OSC per sviluppare un sensore foto elettrochimico ad alta sensitività per ossigeno dissolto, così come un efficiente fotocatodo ibrido organico-inorganico per la produzione di idrogeno in soluzioni acquose. Le nostre scoperte suggeriscono strade per futuri miglioramenti, offrendo una nuova piattaforma per la produzione di idrogeno sostenibile e low-cost.
Hybrid interfaces between conjugated polymers thin films and aqueous solutions for energetic and biological applications
BELLANI, SEBASTIANO
Abstract
In recent years, research on conjugated polymers started to advance its frontiers beyond the applications in light emitting diodes, photovoltaic cells and transistors, facing new challenges in the fields of photoelectrochemistry and biology. A plethora of novel possible applications of organic semiconductors (OSCs) have been reported, including organic photoelectrochemical cells (OPECs), organic field effect transistors (OFETs) for elicitation and recording of cellular activity, water-gated organic field effect transistors (WGOFETs) for bio and environmental sensing, and photo-active interfaces with living cells and tissues. The common denominator of all these proof-of-concept devices is the direct contact between the active polymer surface and a liquid component, which in most cases is an aqueous solution. The aim of this work is to provide a detailed chemical-physical, spectroscopic, optoelectronic and electrochemical characterization of different polymer/liquid hybrid interfaces. First, we report a comprehensive study of chemical-physical effects occurring in thin films of regioregular poly(3-hexylthiophene) (rr-P3HT), the election material for such applications, exposed to different environmental conditions. In particular, its contact with water and possible relative changes in materials are studied in deep with optical spectroscopy methods, allowing to establish that the bulk optoelectronic properties of OSCs are not seriously affected. In addition, Sum-Frequency Generation Vibrational Spectroscopy, a surface-specific technique compatible with electrochemical/biological conditions, demonstrates that the surface of thin films rr-P3HT undergoes a molecular reorientation when exposed to aqueous electrolytes, with respect to their surface structure in air. Continuous Wave Photo-induced Absorption measurements reveal that the charge photogeneration for the rr-P3HT when blended with a typical donor component, i.e. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), is preserved in both aqueous and acetonitrile-based solutions. Moreover, we present a thorough electrochemical characterization of different hybrid polymer/electrolyte interfaces, focusing on capacitive and faradaic processes occurring at the polymer surface upon illumination and/or applying an external bias. Based on this knowledge, we explore organic semiconducting materials in two different application fields. (i) Biological applications. The possibility to use P3HT films as artificial photoreceptor layers, capable to restore light sensitivity in blind retinas, was recently reported by our group. The acquired knowledge of the polymer/electrolyte interface represents the necessary starting point for the complete understanding of the main mechanisms occurring at the interface between the conducting polymer and the living cells/tissues, and for their further exploitation in implantable devices. In addition, we develop different architectures of WGOFETs, which are playing an increasingly important role as sensors for biomedical and environmental applications. By employing different polythiophene derivatives as p-type materials we highlight the specific role played by the double-layer capacitance at the semiconductor-electrolyte interfaces, as determined by a specific orientation of the polymer alkyl-side chains at the interface with water. In addition, we report the first demonstration of three working n-type WGOFETs, based on different materials, namely bithiophene-naphthalene diimide copolymer (PNDIT2), selenophene-vinylene-selenophene-naphthalene diimide copolymer (PNDISVS) and PCBM. The opportunity to employ n-type materials will certainly open up new perspectives in organic bioelectronics devices. (ii) Energetic applications. We establish conjugated polymers as a promising class of materials for OPECs for sensing applications and fuel cells. In particular we demonstrate the possibility to use OSCs to develop a highly sensitive photoelectrochemical dissolved oxygen (DO) sensor as well as efficient hybrid organic-inorganic photocathodes for aqueous H2 production. Our findings suggest paths for future developments, offering a new lever for the sustainable and low-cost H2 production.File | Dimensione | Formato | |
---|---|---|---|
Tesi PhD Bellani Sebastiano Finale.pdf
non accessibile
Descrizione: Thesis text
Dimensione
10.73 MB
Formato
Adobe PDF
|
10.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/117081