Small interfering RNA (siRNA) is receiving increasing attention for the treatment of many genetic diseases, both acquired and hereditary, such as cancer and diabetes. Being a high molecular weight polyanion, siRNA is not able to cross cell membrane, and in addition it is unstable in physiological conditions. Accordingly, a biocompatible nanocarrier able to deliver siRNA into cells is needed. In this work, we synthesized biocompatible positively charged nanoparticles (NPs) following a two-step process that involves ring opening polymerization (ROP) and emulsion free radical polymerization (EFRP). Firstly, we proved the possibility to fine tune the NPs characteristics (e.g. size and surface charge) by changing the synthetic process parameters. Then the capability in loading and deliver undamaged siRNA into cancer cell cytoplasm has been shown. This latter occurs through the biodegradation of the polymer constituting the NPs, whose kinetics can be tuned by adjusting the polymer molecular weight. Finally, the ability of NPs to carry small interfering RNA (siRNA) inside the cells in order to inhibit their target gene has been demonstrated using GFP-positive cells.

Small interfering RNA (siRNA) sta ultimamente ricevendo molte attenzione da parte dei ricercatori grazie alla possibilità di essere impiegato nel trattamento di molte malattie genetiche, sia acquisite che ereditarie, come ad esempio il cancro ed il diabete II mellito. Essendo un polianione ad alto peso molecolare, il siRNA non è in grado di trapassare autonomamente le membrane cellulari e, di conseguenza, il suo impiego in applicazioni biomediche è strettamente collegato allo sviluppo di carrier sintetici che ne permettano l'internalizzazione. In questo lavoro si sono sviluppate nanoparticelle polimeriche dotate di carica positiva in grado di legare alla propria superficie, grazie ad interazioni di natura elettrostatica, il siRNA (carico negativamente), preservandolo dal degrado in ambiente fisiologico e permettendone l'internalizzazione cellulare.

siRNA delivery through positively charged polymer nanoparticles

DRAGONI, LUCA

Abstract

Small interfering RNA (siRNA) is receiving increasing attention for the treatment of many genetic diseases, both acquired and hereditary, such as cancer and diabetes. Being a high molecular weight polyanion, siRNA is not able to cross cell membrane, and in addition it is unstable in physiological conditions. Accordingly, a biocompatible nanocarrier able to deliver siRNA into cells is needed. In this work, we synthesized biocompatible positively charged nanoparticles (NPs) following a two-step process that involves ring opening polymerization (ROP) and emulsion free radical polymerization (EFRP). Firstly, we proved the possibility to fine tune the NPs characteristics (e.g. size and surface charge) by changing the synthetic process parameters. Then the capability in loading and deliver undamaged siRNA into cancer cell cytoplasm has been shown. This latter occurs through the biodegradation of the polymer constituting the NPs, whose kinetics can be tuned by adjusting the polymer molecular weight. Finally, the ability of NPs to carry small interfering RNA (siRNA) inside the cells in order to inhibit their target gene has been demonstrated using GFP-positive cells.
FRASSOLDATI, ALESSIO
MELE, ANDREA
12-feb-2016
Small interfering RNA (siRNA) sta ultimamente ricevendo molte attenzione da parte dei ricercatori grazie alla possibilità di essere impiegato nel trattamento di molte malattie genetiche, sia acquisite che ereditarie, come ad esempio il cancro ed il diabete II mellito. Essendo un polianione ad alto peso molecolare, il siRNA non è in grado di trapassare autonomamente le membrane cellulari e, di conseguenza, il suo impiego in applicazioni biomediche è strettamente collegato allo sviluppo di carrier sintetici che ne permettano l'internalizzazione. In questo lavoro si sono sviluppate nanoparticelle polimeriche dotate di carica positiva in grado di legare alla propria superficie, grazie ad interazioni di natura elettrostatica, il siRNA (carico negativamente), preservandolo dal degrado in ambiente fisiologico e permettendone l'internalizzazione cellulare.
Tesi di dottorato
File allegati
File Dimensione Formato  
TESI_LUCA DRAGONI_Da caricare.pdf

non accessibile

Descrizione: Testo della tesi
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/117552