In today’s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness on energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed to improve energy-aware decision-making. This thesis aims to investigate how to steer the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research has been divided into four sub-objectives, and was accomplished during four main research phases (i.e., four studies and related papers). In the first phase (i.e. first study and paper), by relying on a comprehensive literature review and on experts’ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company’s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Then, considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second phase (i.e. second study and paper) proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle times, and machine shut down. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third phase (i.e. third study and paper), the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate the increase in energy efficiency. In the fourth phase (i.e. fourth study and paper), the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of their factory and their own targets. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis helps to determine the correct level of monitoring energy consumption (i.e., machine level), the interval time and the recommended energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when available) will enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted, while producing a product, thus providing valuable information to decision makers at the factory level as well as to consumers and regulators.
Abstract (Italiano) Nell’odierno scenario manifatturiero, la crescita del costo dell’energia, la maggiore consapevolezza ecologica e il cambiamento dei comportamenti d’acquisto dei consumatori, stanno spingendo i decisori (decision-makers) a considerare come primario il ruolo della Green Manufacturing, o “Produzione verde”. Il paradigma dell’Internet delle Cose (Internet of Things, IoT) ha abilitato una maggiore visibilità e consapevolezza dei consumi energetici, grazie all’utilizzo di sensori e contatori intelligenti, installati sui macchinari, e a livello delle linee di produzione. Grazie a queste tecnologie, i dati real-time sui consumi energetici dei processi manifatturieri possono essere facilmente raccolti e successivamente analizzati, abilitando delle decisioni basate su una maggiore consapevolezza di tali consumi. Questa tesi si pone l’obiettivo principale di capire come guidare l’adozione del paradigma IoT a livello di officina (shop floor), in modo da migliorare la consapevolezza e l’efficienza energetica dei processi produttivi discreti. L’obiettivo primario della ricerca è stato scomposto in quattro sotto-obiettivi, ciascuno dei quali è stato demandato a una delle quattro fasi in cui il processo di ricerca risulta articolato, corrispondenti ad altrettanti studi e relativi articoli. La prima fase del processo di ricerca (ovvero il primo studio e il primo articolo) si è posta l’obiettivo di identificare le pratiche manageriali di produzione efficienti sotto il profilo energetico, abilitate o potenziate dall’adozione delle tecnologie IoT. Questo primo studio è stato effettuato attraverso una revisione sistematica della letteratura, avvalendosi anche delle opinioni e dei commenti di esperti. Il primo studio ha permesso inoltre di elaborare un framework che supporti l’integrazione dei dati energetici raccolti attraverso le tecnologie IoT nelle piattaforme e negli strumenti informatici aziendali. L’obiettivo finale è quello di evidenziare come le decisioni operative e tattiche possano essere prese facendo leva su tali dati, in modo da migliorare l’efficienza energetica. Considerando la variabilità dei prezzi dell’energia in una singola giornata e la disponibilità di dati dettagliati sullo stato energetico dei macchinari, una seconda fase di ricerca (ovvero il secondo studio e il secondo articolo) ha portato all’identificazione di un modello matematico per minimizzare i costi dei consumi energetici legati ai processi produttivi, per una singola schedula di produzione della macchina. Questo modello prende delle decisioni a livello di macchina, stabilendo i tempi di lancio per il processamento dei lavori, i tempi di inattività (idle time) e il tempo di fermo della macchina. Il modello permette dunque all’Operation Manger di realizzare le schedule di produzione meno costose durante ciascun turno. L´obiettivo della terza fase della ricerca (terzo studio e terzo articolo), è stato fornire ai manager una metodologia che aiuti loro a implementare le tecnologie IoT a livello dei sistemi di produzione. Questa metodologia include l’analisi dei sistemi di gestione energetica e di produzione attualmente in uso nell´impianto, e raccomanda delle procedure per implementare le tecnologie IoT e per collezionare e analizzare i dati energetici. La metodolgia è stata validata attraverso uno studio pilota, che ha previsto l’utilizzo di KPI (Key Performance Indicators) per valutare l´aumento dell’efficienza energetica. Infine, l´obiettivo della quarta fase del processo di ricerca (ovvero del quarto studio e articolo), è stato l’elaborazione di un metodo che dia alle aziende una maggiore consapevolezza multi-livello dei consumi energetici legati ai processi di produzione. Il metodo proposto abilita la fabbrica discreta a specificare i consumi energetici, le emissioni di CO2, e il costo dell’energia consumata a livello di operations, produzione e ordini, considerando le fonti energetiche e le fluttuazioni nei prezzi dell’energia. I risultati dimostrano che le decisioni e le pratiche di gestione della produzione efficienti sotto il profilo energetico possono essere potenziate e abilitate dalle tecnologie IoT. Grazie ai risultati di questa tesi, i manager possono approcciare l’adozione delle tecnologie IoT secondo un approccio che sia guidato dai benefici ottenibili, adottando delle pratiche di gestione energetica idonee al livello di maturità della loro fabbrica e in linea coi loro obiettivi. Questa tesi dimostra inoltre che una riduzione significativa dei costi energetici possa essere ottenuta evitando i periodi della giornata caratterizzati da alti costi. Inoltre, questa tesi aiuta a determinare il corretto livello di monitoraggio dei consumi energetici (a livello macchina), l’intervallo di tempo e le analisi raccomandate sui dati raccolti; fattori importanti nel determinare nuove opportunità di miglioramento dell´efficienza energetica. Infine, attraverso l’integrazione tra i dati relativi ai consumi energetici e i dati di produzione (quando disponibili), gli impianti industriali potranno determinare l’ammontare e i costi dell’energia consumata, nonché la quantità di CO2 emessa per realizzare un dato prodotto, fornendo così delle informazioni di valore non solo per i decisori a livello di impianto o azienda, ma anche per i consumatori e per il regolatore.
Utilizing the Internet of Things to promote energy awareness and efficiency at discrete production processes: practices and methodology
SHROUF, FADI
Abstract
In today’s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness on energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed to improve energy-aware decision-making. This thesis aims to investigate how to steer the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research has been divided into four sub-objectives, and was accomplished during four main research phases (i.e., four studies and related papers). In the first phase (i.e. first study and paper), by relying on a comprehensive literature review and on experts’ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company’s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Then, considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second phase (i.e. second study and paper) proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle times, and machine shut down. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third phase (i.e. third study and paper), the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate the increase in energy efficiency. In the fourth phase (i.e. fourth study and paper), the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of their factory and their own targets. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis helps to determine the correct level of monitoring energy consumption (i.e., machine level), the interval time and the recommended energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when available) will enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted, while producing a product, thus providing valuable information to decision makers at the factory level as well as to consumers and regulators.File | Dimensione | Formato | |
---|---|---|---|
Final thesis-Fadi Shrouf.pdf
accessibile in internet per tutti
Descrizione: Final thesis-Fadi Shrouf
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/117771