Chemical looping Combustion (CLC) is a promising oxyfuel-combustion technique that allows the integration of carbon dioxide sequestration in power generations systems without energy penalty. In addition, the irreversibilities in the chemical reaction results lower compared to a conventional combustion, leading to a higher efficiency. In this dissertation a novel syngas fueled CLC based gas turbine system has been enclosed into a special “User Defined” Component within the software Thermoflex. A specific interface has been programmed in order to generate a bidirectional run-time interconnection between Thermoflex and a private software for the calculations of the CLC model. The tailored unit has been improved and its thermodynamic performances have been explored. Once completed, an Integrated Gasification Combined Cycle has been designed from greenfield in Thermoflex and the unique CLC unit has been implemented in the power plant, finally creating a fully interconnected advanced energy system. A comprehensive optimization of the structure has been performed not only maximizing the net efficiency but also minimizing the times of the simulations. Continuous analyses of the power plant from the thermodynamic design point of view have been conducted, evaluating the performances under diverse working conditions and the principal parameters of interest. An ultimate net efficiency of 40.84% has been successfully achieved. The same CLC unit in simple cycle has been compared versus the configuration in Combined Cycle and with the Integration of coal Gasification, showing the influence that the steam cycle manifests on the overall thermodynamic behavior. The feasibility of using alternative fuels, such as biomass, has been briefly discussed and a preliminary comparison between the state of the art CLC IGCC and equivalent conventional systems has been considered in terms of energy efficiency and carbon dioxide avoidance. The energy saved in carbon dioxide sequestration is found to be notable, inducing an improvement of the overall net efficiency of around 7%. In a context of real urgency to reduce greenhouse gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative and sustainable power generation systems.
La Chemical Looping Combustion (CLC) è una promettente tecnica di ossi-combustione che permette nei sistemi di generazione di potenza l’integrazione di un facile sequestro dell’anidride carbonica, evitando penalizzazioni energetiche sul rendimento. Inoltre le irreversibilità dovute al processo di combustione risultano minori rispetto i sistemi tradizionali di turbina a gas. In questo progetto di investigazione un innovativo sistema a turbina a gas basato sulla CLC e alimentato a gas di sintesi è stato racchiuso in uno speciale componente “User-Defined” all’interno del software Thermoflex. Una specifica interfaccia è stata programmata per stabilire una comunicazione bidirezionale tra Thermoflex e un software privato per elaborare il modello della CLC. L’unità sviluppata ad hoc è stata perfezionata e le sue prestazioni termodinamiche sono state esplorate. Una volta completato questo processo, un Ciclo Combinato con Gassificazione Integrata è stato disegnato ex novo in Thermoflex e la particolare unità CLC è stata implementata nella centrale, creando quindi un sistema energetico avanzato completamente interconnesso. E’ stata effettuata un’ onnicomprensiva ottimizzazione della struttura computazionale non solo con l’obbiettivo di massimizzare efficienza netta complessiva, ma anche di minimizzare correttamente i tempi di calcolo. Continue analisi dal punto di vista del disegno termodinamico sono state realizzate, valutando le prestazioni sotto molteplici condizioni di lavoro e i principali parametri di interesse. Una finale efficienza netta ottima di 40.84% è stata raggiunta con successo. La medesima unità CLC in ciclo semplice è stata dunque comparata rispetto la configurazione in Ciclo Combinato e con l’ulteriore integrazione della gassificazione del carbone, mostrando l’influenza che il ciclo a vapore manifesta sull'intero comportamento dell’impianto. E’ stata valutata brevemente la fattibilità dell’uso di combustibili alternativi, come la biomassa. Si è inoltre considerata una comparazione preliminare tra il CLC IGCC allo stato dell’arte e sistemi convenzionali equivalenti in termini di efficienza e di emissioni di biossido di carbonio evitate. Si è visto che l’energia risparmiata nel sequestro dell’anidride carbonica risulta notevole, inducendo un miglioramento dell’ efficienza netta globale di circa il 7%. In un panorama mondiale con un urgenza attuale riguardo la riduzione delle emissioni di gas serra, questa lavoro si propone di contribuire allo sviluppo concettuale di sistemi di generazione di potenza alternativi, sostenibili e altamente efficienti.
Thermodynamic modeling, energetic analysis and optimization of an integrated gasification combined cycle power plant with chemical looping combustion and carbon dioxide sequestration
PORETTI, FABIO
2014/2015
Abstract
Chemical looping Combustion (CLC) is a promising oxyfuel-combustion technique that allows the integration of carbon dioxide sequestration in power generations systems without energy penalty. In addition, the irreversibilities in the chemical reaction results lower compared to a conventional combustion, leading to a higher efficiency. In this dissertation a novel syngas fueled CLC based gas turbine system has been enclosed into a special “User Defined” Component within the software Thermoflex. A specific interface has been programmed in order to generate a bidirectional run-time interconnection between Thermoflex and a private software for the calculations of the CLC model. The tailored unit has been improved and its thermodynamic performances have been explored. Once completed, an Integrated Gasification Combined Cycle has been designed from greenfield in Thermoflex and the unique CLC unit has been implemented in the power plant, finally creating a fully interconnected advanced energy system. A comprehensive optimization of the structure has been performed not only maximizing the net efficiency but also minimizing the times of the simulations. Continuous analyses of the power plant from the thermodynamic design point of view have been conducted, evaluating the performances under diverse working conditions and the principal parameters of interest. An ultimate net efficiency of 40.84% has been successfully achieved. The same CLC unit in simple cycle has been compared versus the configuration in Combined Cycle and with the Integration of coal Gasification, showing the influence that the steam cycle manifests on the overall thermodynamic behavior. The feasibility of using alternative fuels, such as biomass, has been briefly discussed and a preliminary comparison between the state of the art CLC IGCC and equivalent conventional systems has been considered in terms of energy efficiency and carbon dioxide avoidance. The energy saved in carbon dioxide sequestration is found to be notable, inducing an improvement of the overall net efficiency of around 7%. In a context of real urgency to reduce greenhouse gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative and sustainable power generation systems.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Poretti.pdf
solo utenti autorizzati dal 09/04/2017
Descrizione: Elaborato completo con Tavole dello schema d'impianto
Dimensione
6.1 MB
Formato
Adobe PDF
|
6.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/117961