Stroke is one of the worldwide major causes of disability, and the brain injury can end up in paralyzation of muscles and their involuntary contraction. Post-stroke rehabilitation consists of a restorative learning process that, through sessions of task-specific exercises, allows the patient to recover the physical capacity of the limb. Robotic devices are highly suitable for this purpose, as they are capable of introducing high-intensity sessions, with interactive interfaces for the patient and the possibility of reducing the physical workload of the therapist. By now, rehabilitation robots are bulky and expensive, restricting their use to clinical environments. The purpose of this thesis is to conceive, design and assemble a mechatronic device for upper limb rehabilitation, with the aim of being low-cost and easily transportable, in order to allow its use at patient’s home. The device is also aimed to be end-effector based, have a planar workspace and include variable stiffness actuators. In order to to achieve the specifics, an orthogonally-arranged kinematic architecture is conceived, consisting on two antagonistic variable stiffness actuators positioned orthogonally to each other, which exploit a novel cam-based series elastic actuator that introduces the necessary non-linear stiffness. This system was conceived to indepen- dently control position and stiffness on two orthogonal directions. Contrary to the expectations, a kinetostatic analysis shows a coupling effect between the stiffness in the two directions. The entire mechanical design of the device is done afterwards, which includes the definition of the requirements and the detailed dimensioning of every component. The manufacturing operations and assembly phases are described and actually realized, resulting in a prototype of the robot. A few static tests were conducted to observe the force vs displacement behavior that have highlighted a qualitative coherence with the model, but showed a discrepancy in terms of numerical values, which is to be studied and solved in order to properly implement a control strategy.
L’ictus è una delle principali cause di disabilità nel mondo, e i danni al cervello possono portare a paralisi e contrazioni involontarie dei muscoli. La riabilitazione post-ictus si svolge attraverso un processo di recupero della mobilità dell’arto, con sessioni di esercizi che simulano i movimenti quotidiani. I robot sono particolarmente adatti a questo scopo, in quanto sono in grado di effettuare sessioni intensive, introdurre elementi interattivi e ridurre il carico di lavoro per il terapista. I dispositivi di riabilitazione attualmente in commercio sono ingombranti e costosi, rendendoli adatti esclusivamente a centri dedicati. Lo scopo di questa tesi è concepire, progettare e realizzare un dispositivo meccatronico per la riabilitazione dell’arto superiore, con l’obiettivo di essere low-cost e facilmente trasportabile per essere adatto all’utilizzo in ambiente domestico. Il dispositivo è concepito per essere un end-effector, con spazio di lavoro planare per il quale sia previsto l’implementazione di attuatori a rigidezza variabile. Per soddisfare le specifiche, è stata sviluppata un’architettura cinematica ortogonale, composta da due attuatori a rigidezza variabile disposti perpendicolarmente, che sfruttano un innovativo sistema camma-molla per introdurre una rigidezza non lineare. Questo sistema permette di controllare indipendentemente posizione e rigidezza nelle due direzioni. Diversamente da quanto previsto, attraverso un’analisi cinetostatica si è riscontrato un accoppiamento tra le rigidezze nelle due direzioni. Si è progettato il dispositivo, si sono definite le specifiche numeriche e si sono dimensionati i singoli componenti. Si sono successivamente mostrati, nonché realizzati i processi di fabbricazione dei pezzi e le operazioni di assemblaggio, che hanno portato al completamento di un prototipo. Sono stati realizzati dei test statici per analizzare l’andamento della forza in reazione allo spostamento. Le prove hanno evidenziato un comportamento qualitativamente coerente con il modello, ma hanno mostrato una discrepanza a livello quantitativo, che, per poter implementare un sistema di controllo, necessiterà di essere studiato e risolto.
Design and development of a planar cable-driven VSA based robot for upper limb rehabilitation
RAMÍREZ REYES, FRANCISCO ALBERTO;CORBETTA, FRANCESCO
2014/2015
Abstract
Stroke is one of the worldwide major causes of disability, and the brain injury can end up in paralyzation of muscles and their involuntary contraction. Post-stroke rehabilitation consists of a restorative learning process that, through sessions of task-specific exercises, allows the patient to recover the physical capacity of the limb. Robotic devices are highly suitable for this purpose, as they are capable of introducing high-intensity sessions, with interactive interfaces for the patient and the possibility of reducing the physical workload of the therapist. By now, rehabilitation robots are bulky and expensive, restricting their use to clinical environments. The purpose of this thesis is to conceive, design and assemble a mechatronic device for upper limb rehabilitation, with the aim of being low-cost and easily transportable, in order to allow its use at patient’s home. The device is also aimed to be end-effector based, have a planar workspace and include variable stiffness actuators. In order to to achieve the specifics, an orthogonally-arranged kinematic architecture is conceived, consisting on two antagonistic variable stiffness actuators positioned orthogonally to each other, which exploit a novel cam-based series elastic actuator that introduces the necessary non-linear stiffness. This system was conceived to indepen- dently control position and stiffness on two orthogonal directions. Contrary to the expectations, a kinetostatic analysis shows a coupling effect between the stiffness in the two directions. The entire mechanical design of the device is done afterwards, which includes the definition of the requirements and the detailed dimensioning of every component. The manufacturing operations and assembly phases are described and actually realized, resulting in a prototype of the robot. A few static tests were conducted to observe the force vs displacement behavior that have highlighted a qualitative coherence with the model, but showed a discrepancy in terms of numerical values, which is to be studied and solved in order to properly implement a control strategy.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Corbetta_Ramirez.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
69.52 MB
Formato
Adobe PDF
|
69.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/118621