This PhD Thesis work aimed to develop novel nanomaterials directed to treat glomerular diseases of the kidney, which represent a major health problem worldwide. The project explored the use of new drug-loaded polymeric nanocarriers and their targeted delivery to the kidney glomerulus and in particular to podocytes, in order to overcome the failure of current therapeutic regimens in patients with proteinuric diseases. The most significant challenge was to develop colloidal nanomaterials which are able to cross the glomerular filtration barrier (GFB) in order to target podocytes. The barrier, a three-layer structure composed by fenestrated endothelial cells, podocytes and a basement membrane in between, possesses in healthy conditions an effective size cutoff of 6-10 nm, i.e a size which is generally too small for the permeation of many proteins and biomedical nanoparticles. Our synthetic approach focused on the design of ultrasmall polymeric nanocarriers (<30nm) to assess whether such carriers are able to permeate through the glomerular barrier, which is also expected to increase its size cut-off under pathological conditions. Ultrasmall colloidal nanomaterials were successfully synthesized from biodegradable hydrophobic multi-arm polyesters (i.e. poly(ε-caprolactone)) copolymerised with comb-like poly(ethylene glycol) (PEG), which serve as a dense hydrophilic corona. The main outcomes of this work can be summarised as follow: a) A library of multiarm amphiphilic polymers were synthesized by Atom Transfer Radical Polymerisation of PEG-methacrylate, starting from commercial 4-Arm ATRP initiator as well as custom-made multiarm poly(ε-caprolactone) macroinitiators. When needed, a fluorescent monomer (rhodamine methacrylate) was also copolymerized to obtain traceable materials for biological tests. ATRP kinetics and molecular weight distributions of the synthesized polymers were investigated in order to identify optimal reaction conditions (solvent, catalyst, ligand, concentrations, temperature) for the controlled polymerisation, in order to obtain nearly monodisperse polymers. b) These polymers were characterized by NMR, IR and GPC analysis in order to identify composition, molecular weight and polydispersity. Dispersions in water and physiological buffers were analyzed by Dynamic Light Scattering (DLS) to assess average size and size distribution. A subset of polymers which present optimal physicochemical properties was identified and further used for biological tests. In particular, unimolecular carriers of target size <30nm (i.e. compatible with kidney filtration) were selected. c) In vitro tests on podocytes were carried out to assess polymer cytotoxicity, damage on cell cytoskeleton with consequent morphological changes, and uptake. In vivo tests on healthy and proteinuria-induced mice were carried out to analyse material biodistribution following intravenous administration. The selected polymers showed a biocompatible profile, and the ability to cross the kidney glomerular barrier, depending on the extent of kidney damage. d) A hydrophobic drug, dexamethasone, was successfully encapsulated in the nanoparticle core and release profiles were analysed under sink condition. Damaged podocytes were successfully repaired by controlled nanodelivery of dexamethasone, in view of developing new kidney-specific nanotherapeutics. The marked efficacy of these drug-loaded nanocarriers in repairing damaged podocytes, together with their capacity to cross GFB may pave the way for developing a cell-targeted administration of new and traditional drugs in chronic kidney diseases, increasing efficacy and limiting side effects.
L’obiettivo dello studio qui presentato è lo sviluppo di nuovi nanomateriali per il trattamento diretto delle disfunzioni dei glomeruli nei podociti. Tali disfunzioni rappresentano uno dei maggiori problemi di salute nel mondo. Lo studio esplora l’uso di nuovi nanocarrier caricati farmaceuticamente e la loro capacità di raggiungere i glomeruli renali ed in particolare i podociti, in maniera tale da superare i problemi terapeutici in pazienti con disfunzioni proteinuriche. La sfida più significativa è stato lo sviluppo di nanomateriali colloidali in grado di attraversare la barriera di filtrazione glomerulare (GFB) in maniera tale di colpire i podociti. Come sopra accennato la barriera è composta da una struttura a tre strati così definita: cellule endoteliali fenestrate, podociti e membrana basale nel mezzo che, in condizioni fisiologiche ha una dimensione di pori di 6-10nm, cioè una dimensione generalmente troppo piccola per la permeazione di alcune proteine e di nanoparticelle biomedicali. Lo studio si focalizza sulla progettazione di nanovettori polimerici ultra piccoli (<30nm) per valutare se, in tal modo, i trasportatori sono capaci di permeare attraverso la barriera glomerulare, la quale si ipotizza che aumenti la propria capacità di filtrazione sotto condizione patologica. I nanomateriali colloidali ultra piccoli sono sintetizzati con successo da multi braccia idrofobicche bio degradabili composte da poli estere ( ad esempio poli epsilon caprolattone) copolimerizzato con poly(ethylene glicol) (PEG) a configurazione a pettine, struttura che serve come densa corona idrofilica. Il principale risultato di questo lavoro può essere riassunto come segue: a) formazione di una libreria di polimeri anfifilici multi braccia che sono stati sintetizzati da polimerizzazioni Atom Transfer Radical (ATRP) di PEG metacrilato, partendo da iniziatori ATRP commerciali a 4 braccia e anche con macro iniziatori auto prodotti multi braccia costituiti da poli (epsilon caprolattone). Qualora fosse necessario un monomero fluorescente ( rodamina metacrilata) questo è stato copolimerizzato per ottenere materiale tracciabile per test biologici. Le cinetiche ATRP e distribuzione dei pesi molecolari dei polimeri sintetizzati sono state studiate in maniera tale da identificare le condizioni di reazione ottimali (solvente, catalizzatore, legante, concentrazione e temperatura) per controllare la polimerizzazione e anche in maniera tale da ottenere polimerizzazione quasi monodisperse. b) queste polimerizzazioni sono caratterizzate da analisi NMR, IR e GPC al fine di identificare la composizione, peso molecolare e polidispersione. Dispersione in acqua e tamponi fisiologici di tali polimeri sono stati analizzati attraverso l’uso di dynamic light scattering (DLS) per valutare dimensione media e distribuzione della dimensione. Un sottoinsieme di polimeri i quali presentano proprietà ottimali chimico fisiche sono stati identificati e ulteriormente usati per test biologici. In particolare sono stati selezionati nanovettori uni molecolari di dimensione fissata < 30nm ( compatibili con la filtrazione renale). c) test in vitro sui podociti sono stati portati a termine per caratterizzare la citotossicità dei polimeri, il danneggiamento del citoscheletro cellulare con conseguente cambiamento morfologico ed internalizzazione. In seguito sono stati eseguiti test in vivo su topi sani e malati da proteinuria indotta per analizzare la biodistribuzione del materiale, eseguendo somministrazione intra venosa. I polimeri selezionati hanno mostrano un profilo biocompatibile e una capacità di attraversare la barriera glomerulare renale dipendente dall’estensione del danneggiamento della stessa. d) un farmaco idrofobico, desametasone, è stato incapsulato con successo nel core delle nanoparticelle e i profili di rilascio sono stati analizzati in condizioni sink. I podociti danneggiati sono stati riparati con successo attraverso il trasporto controllato del desametasone, avendo come obiettivo lo sviluppo di nuovi nanoterapici rene-specifici. L’efficacia di questi nanocarrier, caricati farmaceuticamente nella riparazione di podociti danneggiati, e grazie alle loro capacità di attraversare le GFB possono aprire la strada per lo sviluppo di nuovi farmaci e il miglioramento di quelli tradizionali per la somministrazione a target cellulare, nei casi di disfunzione cronica renale, incrementando l’efficacia e limitando gli effetti indesiderati rispetto ai farmaci attualmente in uso.
Unimolecular polymeric nanocarriers for targeting podocytes in kidney glomerulus
BRUNI, RICCARDO
Abstract
This PhD Thesis work aimed to develop novel nanomaterials directed to treat glomerular diseases of the kidney, which represent a major health problem worldwide. The project explored the use of new drug-loaded polymeric nanocarriers and their targeted delivery to the kidney glomerulus and in particular to podocytes, in order to overcome the failure of current therapeutic regimens in patients with proteinuric diseases. The most significant challenge was to develop colloidal nanomaterials which are able to cross the glomerular filtration barrier (GFB) in order to target podocytes. The barrier, a three-layer structure composed by fenestrated endothelial cells, podocytes and a basement membrane in between, possesses in healthy conditions an effective size cutoff of 6-10 nm, i.e a size which is generally too small for the permeation of many proteins and biomedical nanoparticles. Our synthetic approach focused on the design of ultrasmall polymeric nanocarriers (<30nm) to assess whether such carriers are able to permeate through the glomerular barrier, which is also expected to increase its size cut-off under pathological conditions. Ultrasmall colloidal nanomaterials were successfully synthesized from biodegradable hydrophobic multi-arm polyesters (i.e. poly(ε-caprolactone)) copolymerised with comb-like poly(ethylene glycol) (PEG), which serve as a dense hydrophilic corona. The main outcomes of this work can be summarised as follow: a) A library of multiarm amphiphilic polymers were synthesized by Atom Transfer Radical Polymerisation of PEG-methacrylate, starting from commercial 4-Arm ATRP initiator as well as custom-made multiarm poly(ε-caprolactone) macroinitiators. When needed, a fluorescent monomer (rhodamine methacrylate) was also copolymerized to obtain traceable materials for biological tests. ATRP kinetics and molecular weight distributions of the synthesized polymers were investigated in order to identify optimal reaction conditions (solvent, catalyst, ligand, concentrations, temperature) for the controlled polymerisation, in order to obtain nearly monodisperse polymers. b) These polymers were characterized by NMR, IR and GPC analysis in order to identify composition, molecular weight and polydispersity. Dispersions in water and physiological buffers were analyzed by Dynamic Light Scattering (DLS) to assess average size and size distribution. A subset of polymers which present optimal physicochemical properties was identified and further used for biological tests. In particular, unimolecular carriers of target size <30nm (i.e. compatible with kidney filtration) were selected. c) In vitro tests on podocytes were carried out to assess polymer cytotoxicity, damage on cell cytoskeleton with consequent morphological changes, and uptake. In vivo tests on healthy and proteinuria-induced mice were carried out to analyse material biodistribution following intravenous administration. The selected polymers showed a biocompatible profile, and the ability to cross the kidney glomerular barrier, depending on the extent of kidney damage. d) A hydrophobic drug, dexamethasone, was successfully encapsulated in the nanoparticle core and release profiles were analysed under sink condition. Damaged podocytes were successfully repaired by controlled nanodelivery of dexamethasone, in view of developing new kidney-specific nanotherapeutics. The marked efficacy of these drug-loaded nanocarriers in repairing damaged podocytes, together with their capacity to cross GFB may pave the way for developing a cell-targeted administration of new and traditional drugs in chronic kidney diseases, increasing efficacy and limiting side effects.File | Dimensione | Formato | |
---|---|---|---|
Tesi definitiva.pdf
non accessibile
Descrizione: Tesi di Dottorato
Dimensione
5.95 MB
Formato
Adobe PDF
|
5.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/119029