Peracetic acid (PAA) is a strong oxidizing agent that, due to its good properties as disinfectant, has drawn increasing attention in wastewater treatments. PAA has a wide spectrum of antimicrobial activity, high effectiveness for primary and secondary effluents and it mainly decomposes into acid acetic, oxygen and water, leading to no harmful by-products in treated water. In wastewater PAA decays rapidly according to Haas and Finch kinetic model, which takes into account initial demand and decay. In order to assess the influence of organic and inorganic compounds on PAA consumption, 40 batch experiments have been carried out according to three experimental design plans (DoE). The PAA concentration was set at 2, 5 and 10 mg/L; 5 inorganics and 6 organics were selected as reference compounds based on compounds (and corresponding concentration) typically present in secondary effluents. The experiments revealed that the organics consumed immediately a considerable amount of PAA, independently from the initial PAA concentration, and consumption dropped rapidly to almost nil after 5 minutes, whereas the PAA consumption due to the inorganics was slow, depending from the initial PAA concentration and persisted until the end of the experiments (60 minutes). In detail, the inorganics (such as reduced iron and orthophosphate) have shown to be the main drivers of the exponential decay. Iron, particularly, has proved to directly consume PAA due to its catalysing capacity whereas orthophosphate has shown to mainly interact with iron, acting as chelating compound toward iron and consequently reducing the iron effect in consuming PAA. As for the organics, proteins such as, casein and peptone, have been highlighted as the main cause of the initial PAA demand, probably due to the hemolytic fission of PAA to generate peroxyl and hydroxyl radicals, which are known to have a high reactivity towards proteins.
L’acido peracetico (PAA) è un buon ossidante che, grazie alle sue buone proprietà disinfettanti, rappresenta una valida alternativa ai cloro-derivati nel settore del trattamento delle acque reflue. Il PAA ha un’attività antimicrobica ad ampio spettro con elevate efficienze di inattivazione sia in effluenti primari che secondari. In acqua decade rapidamente seguendo la cinetica di Haas e Finch che tiene in considerazione consumo iniziale e decadimento, con formazione principalmente di acido acetico, ossigeno e acqua, e con assenza di sottoprodotti tossici. In questo studio, sono stati condotti 40 esperimenti a scala di laboratorio al fine di indagare l’influenza che composti organici e inorganici hanno sul consumo di acido peracetico, utilizzando tre disegni sperimentali, pianificati secondo la metodologia del Disegno Sperimentale (DoE, Design of Experiments). Sono state selezionate 3 concentrazioni di disinfettante (2, 5 e 10 mgPAA/L) e un totale di 11 composti, 5 inorganici e 6 organici, le cui relative concentrazioni sono state definite a partire dai valori riscontrabili in tipici effluenti secondari. Lo studio ha evidenziato che la presenza di sostanze organiche consuma acido peracetico molto rapidamente (entro 5 minuti) e indipendentemente dalla concentrazione iniziale di disinfettante. Il consumo dovuto alle sostanze inorganiche, invece, si è rivelato lento e costante nel tempo e dipendente dalla concentrazione iniziale di disinfettante. Più precisamente, i principali responsabili del decadimento sono stati evidenziati nel ferro ridotto e nell’ortofosfato. Il ferro, in particolare, grazie alla sua capacità di catalizzatore, consuma gran parte del disinfettante, mentre l’ortofosfato, per le sue caratteristiche di agente chelante, interagisce principalmente con il ferro, inibendone la capacità di catalizzazione e rallentando così il decadimento di acido peracetico. Per quando riguarda le sostanze organiche, i composti proteici, come caseina e peptone, sembrano essere i principali responsabili del consumo iniziale. Si ipotizza che ciò sia dovuto alla formazione di radicali liberi, ossidrilici e perossidici, per fissione omolitica del PAA, i quali presentano elevata reattività nei confronti di molecole proteiche.
Disinfection by peracetic acid : influence of inorganic and organic compounds
DELLI COMPAGNI, RICCARDO
2014/2015
Abstract
Peracetic acid (PAA) is a strong oxidizing agent that, due to its good properties as disinfectant, has drawn increasing attention in wastewater treatments. PAA has a wide spectrum of antimicrobial activity, high effectiveness for primary and secondary effluents and it mainly decomposes into acid acetic, oxygen and water, leading to no harmful by-products in treated water. In wastewater PAA decays rapidly according to Haas and Finch kinetic model, which takes into account initial demand and decay. In order to assess the influence of organic and inorganic compounds on PAA consumption, 40 batch experiments have been carried out according to three experimental design plans (DoE). The PAA concentration was set at 2, 5 and 10 mg/L; 5 inorganics and 6 organics were selected as reference compounds based on compounds (and corresponding concentration) typically present in secondary effluents. The experiments revealed that the organics consumed immediately a considerable amount of PAA, independently from the initial PAA concentration, and consumption dropped rapidly to almost nil after 5 minutes, whereas the PAA consumption due to the inorganics was slow, depending from the initial PAA concentration and persisted until the end of the experiments (60 minutes). In detail, the inorganics (such as reduced iron and orthophosphate) have shown to be the main drivers of the exponential decay. Iron, particularly, has proved to directly consume PAA due to its catalysing capacity whereas orthophosphate has shown to mainly interact with iron, acting as chelating compound toward iron and consequently reducing the iron effect in consuming PAA. As for the organics, proteins such as, casein and peptone, have been highlighted as the main cause of the initial PAA demand, probably due to the hemolytic fission of PAA to generate peroxyl and hydroxyl radicals, which are known to have a high reactivity towards proteins.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Delli_Compagni.pdf
solo utenti autorizzati dal 09/04/2019
Descrizione: Testo della tesi
Dimensione
8.43 MB
Formato
Adobe PDF
|
8.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/120103