The aim of this work is to investigate the influence of employing hierarchical one dimensional photonic crystals (h1-DPC) used as photo-anode, on the performance of dye sensitized solar cells. Hierarchical one dimensional photonic crystals are porous structures with high surface area, which are able to control the photon flux and create a structural color. Photon flux control is done by creating a photonic bandgap, which in turn is achieved by periodic variation of refractive index through the multi-layered hierarchical photoanode. The material chosen for fabrication of the hierarchical h1-DPC is TiO2. By exploiting Pulsed Laser Deposition (PLD) technique, it is possible to create self-assembled hierarchical nanostructures at room temperature, with a high surface area from a single material. Refractive index contrast has been achieved by modulation of the material porosity, which is manipulated by changing the background gas pressure during pulsed laser deposition. The refractive index contrast creates a photonic band gap and hence a structural color for the photoanode, independent of dye pigments. The fabricated photoanodes were characterized with UV-Vis spectroscopy, SEM and chromatographic analysis of roughness factor. After dye chemisorption, the TiO2 h-1DPC photoanodes were assembled into a liquid DSC device and showed an average higher power conversion efficiency compared to a reference device of standard mesoporous TiO2 photoanode. In this thesis, the possibility of employing PLD technique for fabrication and tuning the spectral response of h-1DPC photoanodes, as well as creating structural color in DSC independent of dye pigment, is demonstrated. This optical modulation technique is able to enhance the photovoltaic performance and also the aesthetical properties of DSCs.
I cristalli fotonici monodimensionali gerarchici sono strutture porose con una vasta area superficiale, in grado di controllare il flusso fotonico e creare un colore strutturale. Il controllo del flusso fotonioc è realizzato creando un bandgap fotonico, che a sua volta è ottenuto attraverso una variazione periodica dell'indice di rifrazione attraverso il fotoanodo gerarchico multi-strato. Il materiale scelto per la fabbricazione dell' h1-DPC è TiO2. Sfruttando la tecnica della Pulsed Laser Deposition (PLD), è possibile creare da un singolo materiale nanostrutture gerarchiche auto-assemblanti a temperature ambiente, con un'elevata area superficiale. Il contrasto dell'indice di rifrazione è stato ottenuto modulando la porosità del materiale; quest'ultima è manipolata variando la pressione di background del gas durante la deposizione laser. Il contrasto dell'indice di rifrazione crea un bandgap fotonico e di conseguenza un colore strutturale del fotoanodo, indipendente dal pigmento del colorante. I fotoanodi fabbricati sono stati caratterizzati con spettroscopia UV-Vis, SEM e analisi cromatografica del fattore di rugosità. In seguito al chemisorbimento del colorante, I fotoanodi h-1DPC in TiO2 sono stati assemblati in un dispositivo DSC liquido e hanno mostrato un'efficienza di conversione più alta rispetto a quella di un dispositivo di riferimento realizzato con un fotoanodo standard in TiO2 mesoporoso. In questa tesi, viene dimostrata la possibilità di impiegare la tecnica PLD per fabbricare dei fotoanodi h-1DPC e adattarne la risposta spettrale , nonchè quella di creare un colore strutturale del DSC indipendente dal colore del pigmento. Questa tecnica di modulazione ottica, è in grado di migliorare la performance fotovoltaica e le proprietà estetiche dei DSCs.
Hierarchical TiO2 photonic crystals for structural colored dye sensitized solar cells
MANGHOOLI, SARA
2014/2015
Abstract
The aim of this work is to investigate the influence of employing hierarchical one dimensional photonic crystals (h1-DPC) used as photo-anode, on the performance of dye sensitized solar cells. Hierarchical one dimensional photonic crystals are porous structures with high surface area, which are able to control the photon flux and create a structural color. Photon flux control is done by creating a photonic bandgap, which in turn is achieved by periodic variation of refractive index through the multi-layered hierarchical photoanode. The material chosen for fabrication of the hierarchical h1-DPC is TiO2. By exploiting Pulsed Laser Deposition (PLD) technique, it is possible to create self-assembled hierarchical nanostructures at room temperature, with a high surface area from a single material. Refractive index contrast has been achieved by modulation of the material porosity, which is manipulated by changing the background gas pressure during pulsed laser deposition. The refractive index contrast creates a photonic band gap and hence a structural color for the photoanode, independent of dye pigments. The fabricated photoanodes were characterized with UV-Vis spectroscopy, SEM and chromatographic analysis of roughness factor. After dye chemisorption, the TiO2 h-1DPC photoanodes were assembled into a liquid DSC device and showed an average higher power conversion efficiency compared to a reference device of standard mesoporous TiO2 photoanode. In this thesis, the possibility of employing PLD technique for fabrication and tuning the spectral response of h-1DPC photoanodes, as well as creating structural color in DSC independent of dye pigment, is demonstrated. This optical modulation technique is able to enhance the photovoltaic performance and also the aesthetical properties of DSCs.File | Dimensione | Formato | |
---|---|---|---|
Sara Manghooli-780328.pdf
non accessibile
Dimensione
4.91 MB
Formato
Adobe PDF
|
4.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/120462