This Master Thesis work, carried out at MEMS and Microsensors Laboratory of the Department of Electronics, Information Technology and Bioengineering of Politecnico di Milano, focuses on the realization of a system to enable fast and reliable wafer-level characterization of capacitive gyroscopes fabricated in MEMS technologies. Using conventional testing techniques, the electro-mechanical characterization time for such devices grows indeed linearly with the quality factor Q. As Q tends to increase not only with the diffusion of MEMS gyroscopes in high-end markets, but also for new applications in the consumer field, the issue of its long measurement time becomes more and more relevant. Therefore, the prospected diffusion of these high-Q devices, also on large volumes of production, demands for analysis and development of new techniques which allow to fulfill challenging specifications on the maximum estimation time for the dynamic parameters of MEMS gyroscopes. The work presented in this Thesis focused on the study and the development of new electronics, capable to implement two such innovative techniques. After the presentation of the theoretical background and of the adopted modeling tools, the description of the developed electronics and an experimental comparison with the existing techniques are given, in order to highlight the effectivness of the proposed solution.
Il presente lavoro di Tesi di Laurea Magistrale, svolto presso il Laboratorio di MEMS e Microsensori del Dipartimento di Elettronica, Informazione e Bioingegneria del Politecnico di Milano, si è concentrato sulla realizzazione di un sistema che permetta la caratterizzazione rapida e su fetta di giroscopi realizzati in tecnologia MEMS. Utilizzando metodi di test convenzionali, il tempo di misura per tali dispositivi cresce infatti proporzionalmente al fattore di qualità, con quest’ultimo che tende ad aumentare con il diffondersi di applicazioni high-end. La prospettata diffusione di questi dispositivi high-end sia in campo automotive che in campo consumer (cioè su larghi volumi) richiede perciò lo sviluppo di tecniche che permettano di soddisfare queste esigenze di velocità e di analisi a livello wafer. Il lavoro svolto si è concentrato sull’identificazione e sullo sviluppo dell’elettronica in grado di implementare queste tecniche innovative, e successivamente sul confronto con le tecniche esistenti in modo da mettere in luce la bontà della soluzione proposta.
Sviluppo di elettronica di caratterizzazione on-wafer per giroscopi MEMS
VANDI, MATTIA
2014/2015
Abstract
This Master Thesis work, carried out at MEMS and Microsensors Laboratory of the Department of Electronics, Information Technology and Bioengineering of Politecnico di Milano, focuses on the realization of a system to enable fast and reliable wafer-level characterization of capacitive gyroscopes fabricated in MEMS technologies. Using conventional testing techniques, the electro-mechanical characterization time for such devices grows indeed linearly with the quality factor Q. As Q tends to increase not only with the diffusion of MEMS gyroscopes in high-end markets, but also for new applications in the consumer field, the issue of its long measurement time becomes more and more relevant. Therefore, the prospected diffusion of these high-Q devices, also on large volumes of production, demands for analysis and development of new techniques which allow to fulfill challenging specifications on the maximum estimation time for the dynamic parameters of MEMS gyroscopes. The work presented in this Thesis focused on the study and the development of new electronics, capable to implement two such innovative techniques. After the presentation of the theoretical background and of the adopted modeling tools, the description of the developed electronics and an experimental comparison with the existing techniques are given, in order to highlight the effectivness of the proposed solution.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Vandi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
12.85 MB
Formato
Adobe PDF
|
12.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/120547