During a severe accident, the temperature reached in the nuclear core becomes very critical for the materials involved, especially for the fuel that can melt together with the cladding. This lava-like mixture is called corium and is very dangerous for the nuclear power plant integrity because of its high radioactivity and temperature. Knowing the behaviour and properties of the corium is a crucial task, especially after the events occurred in Fukushima. The aim of the present work is to study the interaction between nuclear materials in such extreme conditions. All experiments are carried out on laboratory-scale samples using the laser-heating facility at Joint Research Centre, Institute for Transuranic Elements (Karlsruhe, Germany). The attention is mainly focused on UO2-Zr system, representative of fuel-cladding interaction in Light Water Reactors. Samples formed by an UO2 disc in contact with a Zircaloy ring are analysed simulating the real nuclear fuel rod geometry. The evolution of the melting temperature and emissivity are key factors to evaluate such interaction. Experiments are repeated in pure Ar, in Ar + 6 vol% H2 and in air, showing different behaviours in these environments. Then, the melted and refrozen interfaces are characterised by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy, to observe if diffusion and segregation phenomena are occurred. Some other preliminary tests involving different materials are performed. Pellets made by UO2 and Zr in contact with Al2O3 are melted together to simulate the behaviour of corium interacting with concrete. Also first analyses are conducted using mixed uranium and plutonium dioxides as fuel and stainless steel as cladding, representative of fast reactor conditions. Finally, fragments from Chernobyl’s lava are tested to observe the behaviour of a real corium system. The presented results show relevant melting temperature drops (even hundreds of K compared with pure UO2) and very different phase formation, depending on the simulated conditions. Such information can be useful especially for a better explanation of a meltdown accident evolution from a material science point of view.
Durante un incidente severo in un reattore nucleare, le temperature raggiunte dai materiali diventano critiche, specialmente per il combustibile e la sua guaina, che possono fondersi insieme e formare il corio, una sorta di lava molto pericolosa per l’integrità dell’impianto. E’ di grande attualità lo studio del comportamento e delle proprietà del corio, soprattutto dopo quanto avvenuto a Fukushima. Lo scopo della presente tesi è lo studio sperimentale dell’interazione tra materiali nucleari in queste condizioni estreme, utilizzando la tecnica del riscaldamento laser disponibile presso il Centro Comune di Ricerca, Istituto dei Transuranici (Karlsruhe, Germania). Il sistema maggiormente indagato simula l’interazione tra combustibile e guaina di un tipico reattore ad acqua leggera, riproducendo la geometria che caratterizza una reale barra di combustibile nucleare. Le evoluzioni della temperatura di fusione e dell’emissività durante gli esperimenti sono state usate per osservare il comportamento di questi materiali, dapprima in puro Ar, poi in Ar + 6 vol% H2 e in aria, evidenziando differenze significative. A seguito della fusione e solidificazione, i campioni sono stati osservati al microscopio elettronico a scansione e analizzati tramite spettroscopia elettronica a dispersione per valutare se si siano verificati eventi di segregazione e diffusione. Sono stati eseguiti anche esperimenti preliminari su altri tipi di materiali: per simulare la reazione tra corio e cemento, campioni di UO2-Zr sono stati fusi con Al2O3; successivamente è stata simulata la condizione di un reattore veloce, usando ossidi misti di uranio e plutonio (come combustibile) e acciaio inossidabile (come rivestimento). Infine, sono stati analizzati ad alta temperatura campioni prelevati dalla lava di Chernobyl. I risultati ottenuti mostrano cali significativi nella temperatura di fusione (centinaia di K sotto il valore di riferimento per il combustibile) e la formazione di fasi molto diverse a seconda delle condizioni simulate. Queste informazioni possono essere utili per capire meglio alcuni aspetti legati all’evoluzione di un incidente severo dal punto di vista della scienza dei materiali.
Experimental study of severe accident conditions in nuclear materials
SOLDI, LUCA
2014/2015
Abstract
During a severe accident, the temperature reached in the nuclear core becomes very critical for the materials involved, especially for the fuel that can melt together with the cladding. This lava-like mixture is called corium and is very dangerous for the nuclear power plant integrity because of its high radioactivity and temperature. Knowing the behaviour and properties of the corium is a crucial task, especially after the events occurred in Fukushima. The aim of the present work is to study the interaction between nuclear materials in such extreme conditions. All experiments are carried out on laboratory-scale samples using the laser-heating facility at Joint Research Centre, Institute for Transuranic Elements (Karlsruhe, Germany). The attention is mainly focused on UO2-Zr system, representative of fuel-cladding interaction in Light Water Reactors. Samples formed by an UO2 disc in contact with a Zircaloy ring are analysed simulating the real nuclear fuel rod geometry. The evolution of the melting temperature and emissivity are key factors to evaluate such interaction. Experiments are repeated in pure Ar, in Ar + 6 vol% H2 and in air, showing different behaviours in these environments. Then, the melted and refrozen interfaces are characterised by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy, to observe if diffusion and segregation phenomena are occurred. Some other preliminary tests involving different materials are performed. Pellets made by UO2 and Zr in contact with Al2O3 are melted together to simulate the behaviour of corium interacting with concrete. Also first analyses are conducted using mixed uranium and plutonium dioxides as fuel and stainless steel as cladding, representative of fast reactor conditions. Finally, fragments from Chernobyl’s lava are tested to observe the behaviour of a real corium system. The presented results show relevant melting temperature drops (even hundreds of K compared with pure UO2) and very different phase formation, depending on the simulated conditions. Such information can be useful especially for a better explanation of a meltdown accident evolution from a material science point of view.File | Dimensione | Formato | |
---|---|---|---|
MSc Thesis Luca Soldi_FINALE.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
4.76 MB
Formato
Adobe PDF
|
4.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/120603