A normal metal, in good electrical contact with two closely-spaced superconducting leads, can acquire superconducting properties at low enough temperature. Known as the superconducting proximity effect, this phenomenon has been studied for more than 50 years and continues to fascinate many scientists. In this thesis, we investigate the superconducting proximity effect in graphene, a monolayer of carbon atoms arranged in a two-dimensional (2D) honeycomb lattice. Here graphene plays two roles: (i) It is a truly 2D crystal whose 2D electron gas (2DEG) can be directly accessed on the surface. This property allows both transparent electrical contact with superconductors and direct observation of the 2DEG electronic properties, that may provide a deeper understanding of the proximity effects. (ii) Thanks to its unique gapless band structure and linear energy dispersion, graphene provides a platform for the study of superconductivity carried by Dirac fermions, that may give rise to exotic phenomena in the superconducting regime. In order to realize these potentials, it is crucial to have good control of this material in regards to both fabrication and characterization. A sophisticated nanofabrication process is required in order to obtain high quality graphene devices. Low-noise tunneling spectroscopy measurements are performed in a cryogenic environment in order to investigate the superconducting proximity effect in graphene. The manuscript is organised in two main parts. The first part deals with the essential theoretical concepts arranged as follows: 1. The Electronic Properties of Graphene: this chapter gives an introduction to the basic electronic properties of graphene, presenting the band structure of graphene based on a tight-binding model and the gate-tunability nature of the Dirac fermions, essential in our experiment. 2. A Quantum Phenomenon on a Macroscopic Scale: a review of the macroscopic quantum model of superconductivity is presented. A particular focus is given to the flux quantization and the Josephson effect, manifestations of the macroscopic quantum wave function dependencies. Finally the working principle of Superconducting Quantum Interference Devices is presented. 3. Andreev Bound States and The Superconducting Proximity Effect: in this chapter the Andreev reflection, the phase-coherent transport of particles coupled by superconductors, and the corresponding energy bound states (Andreev bound states) are studied in long and short junction limits with an emphasis on the impurity scattering effects. In the last part of the chapter the principle of tunneling spectroscopy is presented. The second part of the manuscript is dedicated to the experiment and it is organised as follows: 4. Device Fabrication: in this chapter a new fabrication scheme aiming at preserving the pristine nature of the 2DEG as well as to minimize the doping introduced by external probes is presented. 5. Measurement Setup: a review on dilution refrigeration technique and setup is presented with an emphasis on noise filtering. 6. Measurement Results: the tunneling spectroscopy of supercurrent-carrying Andreev states is presented. The tunneling spectroscopy of graphene in superconducting regime reveals not only the Andreev bound states in the 2D limit, but also the first experimental proof of Andreev scattering states.
Un materiale conduttore, posizionato in condizioni ottimali di contatto elettrico tra due materiali superconduttori ravvicinati, può acquisire proprietà superconduttive quando la temperatura è al di sotto di una determinata temperatura critica. Noto come il superconducting proximity effect, questo fenomeno è stato studiato per più di cinquant’anni e continua ad affascinare la Comunità scientifica. Obiettivo del presente lavoro è quello di investigare il superconducting proximity effect nel grafene, materiale bidimensionale (2D) costituito da atomi di carbonio posizionati in una struttura a nido d’ape. In tale ricerca il grafene mostra due punti di forza: • Essendo un materiale puramente 2D, è possibile accedere, direttamente sulla superficie, al gas elettronico bidimensionale (2DEG). Questa proprietà permette di ottenere contatti elettrici ottimali con il materiale superconduttore e di osservare direttamente le proprietà del 2DEG, che potrebbero fornire una più approfondita comprensione degli effetti di prossimità. • Grazie alla sua unica band structure senza gap e alla sua dispersione lineare in energia, il grafene fornisce una piattaforma perfetta per lo studio della superconduttività per mezzo di Dirac fermions, i quali potrebbero mostrarsi responsabili di fenomeni insoliti in regime superconduttivo. L’analisi di tali fenomeni è resa possibile dall’utilizzo di un device di elevata qualità, ottenuto mediante un processo di nanofabbricazione sofisticato sviluppato nei laboratori del MIT e della Harvard University. Sono state inoltre eseguite misurazioni di spettroscopia tunnel a temperature criogeniche con lo scopo di investigare il superconducting proximity effect nel materiale preso in esame. Il presente elaborato si articola in due macrosezioni, a loro volta strutturate in capitoli. Nella prima di esse: 1. The Electronic Properties of Graphene: costituisce un’introduzione alle proprietà elettroniche di base del grafene, presentando la struttura a bande per mezzo del tight-binding model e la natura dei Dirac fermions che permette di controllare la densità di portatori per mezzo di un elettrodo. 2. A Quantum Phenomenon on a Macroscopic Scale: presenta il modello quantistico macroscopico della superconduttività con particolare attenzione alla quantizzazione del flusso magnetico e all’effetto Josephson, entrambi manifestazione della natura della funzione d’onda macroscopica quantistica. Infine viene introdotto il principio di funzionamento dello SQUID (Superconducting Quantum Interference Device). 3. Andreev Bound states and The Superconducting Proximity Effect: si focalizza sullo studio del fenomeno noto come Andreev reflection, responsabile del trasporto di Cooper pairs attraverso un materiale non superconduttore. Da tale fenomeno hanno origine gli Andreev bound states, stati elettronici localizzati all’interno di un normale conduttore posizionato tra due materiali supercondutori ravvicinati. La seconda parte è invece dedicata alla descrizione del processo di fabbricazione del device e dei risultati sperimentali ottenuti: 4. Device Fabrication: descrive il processo di fabbricazione del device con l’obiettivo di preservare le caratteristiche elettroniche del grafene e minimizzare l’effetto del doping elettrostatico introdotto da probes esterne. 5. Measurement Setup: presenta il setup di misura, con particolare attenzione alla tecnica di filtraggio del rumore. 6. Measurement Results: presenta i risulati sperimentali ottenuti dalla spettroscopia tunnel degli Andreev states responsabili del trasporto della supercorrente; tali risultati non riguardano soltanto l’osservazione degli Andreev bound states nel limite 2D, ma costituiscono la prima prova sperimentale dell’esistenza degli Andreev scattering states.
Superconducting proximity effect in graphene nanodevices
PISONI, RICCARDO
2014/2015
Abstract
A normal metal, in good electrical contact with two closely-spaced superconducting leads, can acquire superconducting properties at low enough temperature. Known as the superconducting proximity effect, this phenomenon has been studied for more than 50 years and continues to fascinate many scientists. In this thesis, we investigate the superconducting proximity effect in graphene, a monolayer of carbon atoms arranged in a two-dimensional (2D) honeycomb lattice. Here graphene plays two roles: (i) It is a truly 2D crystal whose 2D electron gas (2DEG) can be directly accessed on the surface. This property allows both transparent electrical contact with superconductors and direct observation of the 2DEG electronic properties, that may provide a deeper understanding of the proximity effects. (ii) Thanks to its unique gapless band structure and linear energy dispersion, graphene provides a platform for the study of superconductivity carried by Dirac fermions, that may give rise to exotic phenomena in the superconducting regime. In order to realize these potentials, it is crucial to have good control of this material in regards to both fabrication and characterization. A sophisticated nanofabrication process is required in order to obtain high quality graphene devices. Low-noise tunneling spectroscopy measurements are performed in a cryogenic environment in order to investigate the superconducting proximity effect in graphene. The manuscript is organised in two main parts. The first part deals with the essential theoretical concepts arranged as follows: 1. The Electronic Properties of Graphene: this chapter gives an introduction to the basic electronic properties of graphene, presenting the band structure of graphene based on a tight-binding model and the gate-tunability nature of the Dirac fermions, essential in our experiment. 2. A Quantum Phenomenon on a Macroscopic Scale: a review of the macroscopic quantum model of superconductivity is presented. A particular focus is given to the flux quantization and the Josephson effect, manifestations of the macroscopic quantum wave function dependencies. Finally the working principle of Superconducting Quantum Interference Devices is presented. 3. Andreev Bound States and The Superconducting Proximity Effect: in this chapter the Andreev reflection, the phase-coherent transport of particles coupled by superconductors, and the corresponding energy bound states (Andreev bound states) are studied in long and short junction limits with an emphasis on the impurity scattering effects. In the last part of the chapter the principle of tunneling spectroscopy is presented. The second part of the manuscript is dedicated to the experiment and it is organised as follows: 4. Device Fabrication: in this chapter a new fabrication scheme aiming at preserving the pristine nature of the 2DEG as well as to minimize the doping introduced by external probes is presented. 5. Measurement Setup: a review on dilution refrigeration technique and setup is presented with an emphasis on noise filtering. 6. Measurement Results: the tunneling spectroscopy of supercurrent-carrying Andreev states is presented. The tunneling spectroscopy of graphene in superconducting regime reveals not only the Andreev bound states in the 2D limit, but also the first experimental proof of Andreev scattering states.File | Dimensione | Formato | |
---|---|---|---|
PISONIriccardo_MasterThesis.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
74.56 MB
Formato
Adobe PDF
|
74.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/120727