The cardiovascular system permits blood to circulate and transport nutrients (such as amino acids and electrolytes), oxygen, carbon dioxide, hormones, and blood cells to and from the cells in the body to provide nourishment and help in fighting diseases, stabilize temperature and pH and maintain homeostasis. The essential components of the human cardiovascular system are the heart, blood and blood vessels. Many diseases affect the cardiovascular system and among them atherosclerosis, which consists in the formation of atheromatous plaques in the walls of arteries possibly leading to their occlusion, is the most relevant one. Atherosclerosis is one of the leading causes of death in Western society and one of the most pressing clinical problems of the field is the need for small diameter vascular grafts for coronary artery bypass surgery. In the USA alone, nearly 1.4 million surgical procedures related to coronaropathies (balloon angioplasty, coronary atherectomy, insertion of coronary artery stent, coronary artery bypass graft) are performed annually (USA Centers for Disease Control and Prevention, 2010 update) and the number of coronary interventions is predicted to increase considerably owing to the rapid growth of the elderly demographic of the population. In this context, tissue engineered blood vessels (TEBVs) have been proposed as living arterial substitutes and many progresses have been made in this direction. Unfortunately, further work is still needed to ensure success in eventual clinical translation. However, there exists a urgent and critical need for preclinical testing systems, alternative to in vivo tests, for application in cardiovascular research (investigation of the physiology of vascular tissue and of the etiology of vascular diseases) and for the development of intravascular technologies (e.g., drug-delivery systems, stents, intravascular imaging) and drugs and, in this context, the use of TEBVs as vascular tissue models could be immediately impactful. In fact, vascular tissue engineering has emerged as a promising technology in the design of ideal, responsive, living artery equivalents. In this context, the use of collagen gels do have a number of benefits, such as biocompatibility, absence of immunogenicity and high availability, since it could be easily purified from living organisms. However, collagen gel-based TEBVs, even upon extensive remodelling and maturation in dynamic conditions, commonly suffer from two interrelated issues: i) absence in their composition of important protein components, specifically elastic fibres and ii) insufficient mechanical properties, especially in terms of elastic properties. In fact, elastin, the main component of elastic fibres, is notably absent from the approaches utilized to engineer vessels and it is recognised that the process of elastic fibres deposition (elastogenesis) is extremely reduced in collagen gels and in general in vitro. Elastogenesis begins with the deposition of fibrillin-1 (FBN-1) that is strictly dependent on the presence of extracellular fibrils of fibronectin (FN). Subsequently FBN-1 acts as a template for soluble tropoelastin that is then cross-linked and arranged to form mature elastic fibres. Elastic fibres are the dominant protein structures of the arterial wall playing a pivotal role in the definition of its biomechanical properties. They impart elasticity to the tissue, providing elastic recoil, but have also key biological roles in the physiology of arteries; therefore, their presence in artery models is pivotal and succeeding in stimulating their deposition would represent a significant breakthrough in vascular tissue engineering. In this project, the use of gene delivery has been proposed as possible solution to this issue. Gene delivery techniques allow the regulation of expression of specific proteins in target cells, and represent a robust tool for tissue engineering, as evidenced by a number of combined approaches reported in literature. Gene delivery consists in the introduction of exogenous genetic material into cells in order to alter their phenotype. Its clinical translation, named gene therapy, represents a promising approach for the treatment of a wide variety of diseases that conventional medicine fails to address. Several delivery methods have been developed to allow the transport of nucleic acids inside cells, each of them with its own advantages and disadvantages. Viruses are recognized as the most efficient gene delivery vectors but the limited size of the nucleic acids they can carry hinders their application when large genes or multiple genes have to be delivered. The use of non-viral methods can overcome this issue, although they often exhibit lower delivery efficacies. Chemical non-viral vectors for gene delivery mainly encompass two major classes, cationic lipids and cationic polymers that can be engineered to target specific cells and can be customized for specific applications such as for tissue engineering purposes. The overall goal of this work is to combine gene delivery techniques with cellularised collagen gels in order to promote the expression and deposition of elastic fibre components in vascular constructs, finally producing in vitro models with structural properties mimicking those of native tissues. In this context, the objectives of this thesis are focused on primary necessary steps to lay the groundwork for an optimal in vitro arterial model. The aims of this project developed at LBB (Laboratoire de Biomatériaux et Bioingénierie, Canada) are threefold and the experimental work can be divided in three corresponding phases: • Aim 1: Identification and development of superior transfection reagents and optimization of transfection protocols for SMCs and ECs • Aim 2: Development and characterization of fibronectin-loaded collagen gel constructs cellularised with SMCs • Aim 3: Combination of the two approaches previously described in order to realize and characterize fibronectin-loaded collagen gel constructs cellularised with transfected SMCs/ECs Primary Smooth Muscle Cells (SMCs) from Porcine Aorta (PAoSMCs), Human Umbilical Artery SMCs (HUASMCs) and Human Umbilical Vein Endothelial Cells (HUVECs) were transfected with pGLuc, pEYFP or pELAST (encoding human tropoelastin) using Lipofectamine 2000, Lipofectamine 3000, bPEI, LPEI and JetPEI. A series of experiments investigating intrinsic and extrinsic transfection parameters were performed to create optimized transfection protocols. In particular, DNA/reagent ratio, plasmid dose delivered to cells, medium change, centrifugation and transfection medium were optimised, thus allowing to outline the best transfection protocols for each cell type and transfection reagent. Cell viability and luciferase activity were assayed in order to identify the best compromise between low cytotoxicity and high transfection efficiency. Immunofluorescence analysis permitted to evaluate qualitatively the results obtained using the optimized transfection protocols. PAoSMCs were discovered to be the best cell type compared to HUASMCs and HUVECs in terms of a tolerable cytotoxicity matched with highest transfection efficiency. The transfection optimization herein adopted allowed to choose in a wide range of reagent/DNA ratios the best transfection conditions for each cell type. In this first comparative series of experiments it was possible to state for Lipofectamine 2000 the reagent/DNA ratio equal to 3, for Lipofectamine 3000 ratio 2 and for jetPEI ratio 4. Subsequently it was possible to establish the positive effect of the 4h medium change on cell viability and the remarkable increase in transfection efficiency due to a centrifugation step immediately after the administration of the transfection complexes to the cells. Furthermore, the dose-response experiments enabled to identify the best transfectant and DNA dose for each cell type: i) for PAoSMCs, Lipofectamine 2000 at 0.075 μg/cm2; ii) for HUASMCs, Lipofectamine 2000 at a dose of 0.01875 μg/cm2 and iii) for HUVECs, bPEI (N/P30) at a dose of 0.15 μg/cm2. Through kinetic analysis it was possible to define a gene expression trend until 7d. The series of experiments conducted in this first phase allowed to define optimized transfection protocols providing that transfections were conducted in complete DMEM + 10% FBS and 1% PenStrep without growth factors, immediately after the transfection procedure cells were centrifuged in order to increase their luciferase activity and after 4 hours of incubation medium was replaced with fresh new DMEM allowing the increase in cell viability. However, some limitations were highlighted especially in terms of cytotoxicity concerning HUASMCs and in transfection efficiency for both HUASMCs and HUVECs in comparison to PAoSMCs. Since the presence of FN is fundamental in the deposition of elastic fibers, cellularised collagen gels were loaded with FN and the influence of FN content on construct properties was investigated. Disc and tubular-shaped cellularised collagen gels, loaded with FN, were prepared using type I collagen from rat tail tendon and then characterized in terms of cell viability, gel contraction, mechanical properties (stress-relaxation tests), morphology and histology. The presence of FN in the collagen gel formulation improved construct contraction and its mechanical properties already after 24h of culture. In particular a FN concentration of 0.05 mg/ml was chosen as optimal and led to an appreciable increase of approximately 25% of contraction of disk-shaped collagen gels after 24h of static maturation if compared to plain collagen gels. The same amount of FN led to an increase of 40% of radial contraction for tubular-shaped collagen constructs after one day of maturation. Regarding mechanical properties, FN-loaded samples exhibited values of both compressive and tensile elastic modulus that almost doubled those associated with plain collagen gels. Even if the mechanical properties, in terms of tensile elastic modulus, were lower than those of native tissue, they were anyway comparable with values already found in literature. In the final part of the present work, gene delivery was applied to cellularised collagen constructs, aiming at demonstrating the possibility to up-regulate the expression of transgenes such as tropoelastin inside these systems. The results allowed to state that both cell viability and luciferase activity were comparable to the results obtained for cells transfected in traditional ways. Viability for each transfectant was extremely positive and around 100%, and luciferase activity drastically decreased after 48h. Thus the tripsinization and the seeding in gels, even after 4h from the end of transfection, did not affect the capability of transfected cells to express the transgene of interest. In conclusion, the high expression level preserved even after the seeding in collagen constructs clearly demonstrates the feasibility of combining gene delivery with collagen gel- based vascular wall models. Herein, we showed the feasibility of using gene delivery to foster elastic fibres deposition inside collagen gel-based constructs and the importance of FN in their remodelling by vascular cells. The combination of FN-loaded collagen gels with optimized transfection protocols for the expression of elastic fibres components is ongoing and will allow to investigate the process of elastogenesis in in vitro artery models. In order to verify the deposition of elastin within collagen gels, samples were embedded in paraffin and 4 μm sections were cut. The staining of tropoelastin and of other relevant elastic fibres-related proteins, such as fibrillin-1 and lysyl oxidase, is ongoing in collaboration with McGill University (Montreal) where the appropriate staining protocol are being developed. This analysis will enable to assess the effective role of FN during elastogenesis, and, in particular, if the presence of FN, possibly combined with transgenes such as FBN-1, could further improve this process. Several further experiments will be performed in the context of this study. First of all a series of experiments will be conducted in order to verify if loading collagen gels with Fibrillin-1-expressing SMCs leads to vascular models with increased mechanical and structural properties and to clarify the role of FN in the process of microfibrils maturation inside collagen gel-based 3D models. Afterwards, the focus will be directed towards the investigation of the elastogenesis in the tunica media model, aimed at unravelling the role of tropoelastin, fibrillin-1 and FN in the deposition and organization of elastic fibres in 3D arterial wall models. Subsequently, the developed models will be upgraded by the addition of layers of ECs on the surface of SMCs-cellularised collagen gels, mimicking the tunica intima of arteries. ECs will be transfected, with optimised protocols in order to promote the deposition of elastic fibres components and to produce an elastic lamina-like structure. To develop these co-culture models, tubular constructs will be mounted on a rotating-wall bioreactor developed at LBB to test the ability to deposit microfibrils and/or elastic fibres by transfected ECs. Finally, a tri-culture model will be developed obtaining tri-layered constructs composed of an ECs monolayer (intima layer), a layer of SMCs-cellularised collagen gel (media layer) and an outer collagen gel layer seeded with FBs (adventitia layer), aimed at completely mimicking the arterial structure. This tri-culture tri-layered model will allow to investigate the mutual intimate relationships existing among ECs, SMCs and FBs in the process of deposition and remodelling of the vascular ECM. The results obtained during the proposed research will allow to improve the understanding of the mechanisms related to the deposition and organization of vascular ECM with a special focus on elastic fibres formation. Furthermore, the set of vascular tissue models will constitute a versatile testing platform with a wide range of possible applications and will represent a practical, cost-effective and reliable alternative to massive in vivo screening, finally improving the effectiveness of clinical research in the field of vascular diseases.
Il sistema cardiovascolare consente la circolazione del sangue e il trasporto di sostanze nutritive (come aminoacidi ed elettroliti), ossigeno, anidride carbonica, ormoni e globuli rossi da e verso le cellule nel corpo per fornire nutrimento e contribuisce alla lotta contro le malattie, a stabilizzare la temperatura e pH e mantenere l'omeostasi. Le componenti essenziali del sistema cardiovascolare umano sono il cuore, il sangue e i vasi sanguigni. Molte malattie colpiscono il sistema cardiovascolare e l’aterosclerosi, caratterizzata dalla formazione di placche ateromatose nelle pareti delle arterie che possono determinarne eventualmente l'occlusione, è la più rilevante. L'aterosclerosi è una delle principali cause di morte nella società occidentale e uno dei problemi clinici più urgenti del settore è la necessità di innesti vascolari di piccolo diametro per gli interventi di bypass coronarico. Solo negli Stati Uniti, quasi 1.4 milioni di procedure chirurgiche relative alle coronaropatie (angioplastica con palloncino, aterectomia coronarica, inserimento di stent coronarico, bypass coronarico) vengono eseguiti ogni anno (Centri USA per il Controllo delle Malattie e la Prevenzione, update del 2010) e il numero di interventi coronarici dovrebbe aumentare considerevolmente a causa della rapida crescita demografica di persone anziane. In questo contesto, i vasi sanguigni ingegnerizzati (tissue engineered blood vessels, TEBVs) sono stati proposti come sostituti arteriosi e molti progressi sono stati fatti in questa direzione. Purtroppo, è ancora necessario un ulteriore lavoro per garantire il successo per un eventuale passaggio all’approccio clinico. Tuttavia, esiste una necessità urgente e critica per i sistemi di test preclinici, in alternativa alle prove in vivo, per l'applicazione nella ricerca cardiovascolare (studio della fisiologia del tessuto vascolare ed eziologia delle malattie vascolari) e per lo sviluppo di tecnologie intravascolari (es. dispositivi di drug delivery, di imaging intravascolare, stent) e farmaci e, in questo contesto, l'uso di TEBVs come modelli di tessuti vascolari potrebbe essere immediatamente di impatto. Infatti, l'ingegneria dei tessuti vascolari è emersa come tecnologia promettente nella progettazione di equivalenti ideali e reattivi delle arterie. In questo contesto, l'uso di gel di collagene ha un elevato numero di vantaggi, quali la biocompatibilità, l’assenza di immunogenicità e l’elevata disponibilità, poiché il collagene può essere facilmente purificato da organismi viventi. Tuttavia, i TEBVs a base di gel di collagene, nonostante un estensivo rimodellamento e maturazione in condizioni dinamiche, comunemente soffrono di due problematiche interdipendenti: i) l’assenza nella loro composizione di importanti componenti proteiche, nel caso specifico di fibre elastiche e ii) insufficienti proprietà meccaniche, soprattutto in termini di proprietà elastiche. Infatti, l’elastina, il componente principale delle fibre elastiche, è notevolmente assente negli approcci utilizzati per ingegnerizzare i vasi sanguigni ed è stato riscontrato che il processo di deposizione delle fibre elastiche (elastogenesi) è estremamente ridotto nei gel di collagene e in generale in vitro. L’elastogenesi inizia con la deposizione di fibrillina-1 (FBN-1) che è strettamente dipendente dalla presenza di fibrille extracellulari di fibronectina (FN). Successivamente FBN-1 agisce da template per la tropoelastina solubile la quale viene poi reticolata e disposta in modo tale da formare fibre elastiche mature. Le fibre elastiche sono le strutture proteiche dominanti della parete arteriosa e rivestono un ruolo fondamentale nella definizione delle sue proprietà biomeccaniche. Queste conferiscono elasticità al tessuto determinando un ritorno elastico ma hanno anche dei ruoli biologici chiave nella fisiologia delle arterie, quindi la loro presenza nei modelli di arteria è fondamentale e riuscire a stimolare la loro deposizione rappresenterebbe una svolta significativa nell'ingegneria dei tessuti vascolari. In questo progetto, la tecnica del gene delivery è stata proposta come possibile soluzione a questo problema. Le tecniche di gene delivery permettono l'espressione controllata di specifiche proteine in cellule bersaglio, e rappresentano un valido strumento per l'ingegneria tissutale, come evidenziato da una serie di approcci combinati riportati in letteratura. Il gene delivery consiste nell’introduzione di materiale genetico esogeno all’interno di cellule bersaglio in modo da alterarne il fenotipo. La sua traduzione clinica, chiamata gene therapy, rappresenta un approccio promettente per il trattamento di un’ampia varietà di malattie tuttora non curabili con la medicina convenzionale. Molti metodi di gene delivery sono stati sviluppati per permettere il trasporto di acidi nucleici all’interno di cellule, ognuno di questi con i suoi vantaggi e svantaggi connessi. I virus sono identificati come i vettori più efficienti per il gene delivery tuttavia la dimensione limitata degli acidi nucleici che sono in grado di traportare ha ostacolato il loro impiego nel momento in cui devono essere espressi geni grandi o più geni contemporaneamente. L’utilizzo di vettori non virali può superare questo limite ma questi mostrano solitamente una minore efficacia del meccanismo di delivery. I vettori chimici non virali sono composti principalmente da due classi maggiori, i lipidi cationici ed i polimeri cationici che possono essere ingegnerizzati per prendere di mira cellule specifiche e possono essere modificati per applicazioni specifiche come ad esempio per scopi relativi all’ingegneria dei tessuti. Lo scopo finale di questo lavoro è quello di combinare le tecniche di gene delivery con gel di collagene cellularizzati in modo tale da promuovere l’espressione e la deposizione di componenti di fibre elastiche nei costrutti vascolari, arrivando infine alla produzione di modelli in vitro con proprietà strutturali che riproducano quelle dei tessuti nativi. In questo contesto gli obiettivi di questa tesi sono focalizzati sugli step preliminari necessari per gettare le basi per un modello di arteria in vitro ottimale. Gli scopi di questo progetto sviluppato al LBB (Laboratoire de Biomatériaux et Bioingénierie, Canada) sono triplici e possono di conseguenza essere divisi in tre fasi corrispondenti: • Obiettivo 1: Identificazione e sviluppo di reagenti superiori di trasfezione e ottimizzazione dei protocolli di trasfezione per SMCs e ECs • Obiettivo 2: Sviluppo e caratterizzazione di costrutti di gel di collagene implementati con fibronectina e cellularizzati con SMCs • Obiettivo 3: Combinazione dei due approcci precedentemente descritti per realizzare e caratterizzare costrutti di gel di collagene implementati con fibronectina e cellularizzati con SMCs/ECs trasfettate Cellule muscolari lisce primarie (SMC) da aorta di suino (PAoSMCs), cellule muscolari lisce da arteria ombelicale umana (HUASMCs) e cellule endoteliali da vena ombelicale umana (HUVEC) sono state trasfettate con pGLuc, pEYFP o pELAST (il quale codifica per la tropoelastina umana) utilizzando come trasfettanti Lipofectamine 2000 Lipofectamine 3000, bPEI, LPEI e JetPEI. Una serie di esperimenti che studiano parametri di trasfezione intrinseci ed estrinseci sono stati eseguiti in modo tale da poter creare dei protocolli di trasfezione ottimizzati. In particolare sono stati ottimizzati il rapporto DNA/reagente, la dose plasmidica consegnata alle cellule, il cambio medium, la centrifugazione e il medium di trasfezione, consentendo in tal modo di delineare i migliori protocolli di trasfezione per ogni tipo cellulare e per ogni transfettante. La vitalità cellulare (saggio Alamar Blue) e l'attività luciferasica sono stati analizzate per individuare il miglior compromesso tra bassa citotossicità e alta efficienza di trasfezione. Le analisi di immunofluorescenza hanno inoltre permesso di valutare qualitativamente i risultati ottenuti utilizzando i protocolli di trasfezione ottimizzati. Le PAoSMCs sono risultate essere il migliore tipo cellulare rispetto alle HUASMCs e HUVEC in termini di citotossicità tollerabili abbinate ad una massima efficienza di trasfezione. Il processo di ottimizzazione del protocollo di transfezione qui adottato ha permesso di valutare in una vasta gamma di rapporti DNA/reagenti le migliori condizioni di transfezione per ogni tipo cellulare. In questa prima serie di esperimenti comparativi è stato possibile affermare che il miglior rapporto DNA/reagente per la Lipofectamine 2000 è pari a 3, per la Lipofectamine 3000 è stato scelto il rapporto 2 mentre per il jetPEI il rapporto 4. Successivamente è stato possibile stabilire e sottolineare l'effetto positivo del cambio medium dopo 4 ore dalla trasfezione sulla vitalità cellulare e il notevole aumento dell'efficienza di transfezione determinato da una fase di centrifugazione subito dopo l'aggiunta dei complessi di trasfezione alle cellule. Inoltre gli esperimenti relativi al quantitativo di dose hanno permesso di individuare la migliore dose di trasfettante e DNA per ogni tipo cellulare: i) per le PAoSMCs è stata scelta la Lipofectamine 2000 0,075 g/cm2; per le HUASMCs la Lipofectamine 2000 alla dose di 0,01875 g/cm2 e per le HUVEC il bPEI (N / P30) ad una dose di 0,15 g/cm2. Attraverso l'analisi cinetica è stato inoltre possibile definire un pattern di espressione genica nell’arco temporale di 7 giorni. La serie di esperimenti condotti in questa prima fase ha dunque permesso di definire dei protocolli di trasfezione specificamente ottimizzati in cui si è stabilito che le trasfezioni sono state condotte in DMEM completo + 10% FBS e 1% PenStrep senza fattori di crescita, subito dopo la procedura di trasfezione le cellule sono state centrifugate per aumentare l’attività luciferasica e dopo 4 ore di incubazione il medium è stato sostituito con DMEM fresco permettendo di aumentare la vitalità cellulare. Tuttavia sono state evidenziate alcune limitazioni soprattutto in termini di citotossicità relativamente alle HUASMCs e in termini di efficienza di trasfezione sia per le HUASMCs che per le HUVECs rispetto alle PAoSMCs. Poiché la presenza di FN è fondamentale per la deposizione di fibre elastiche, i gel di collagene cellularizzati sono stati caricati con FN ed è stata studiata l'influenza del contenuto di FN sulle proprietà dei costrutti. Gel di collagene in forma di disco e di forma tubulare cellularizzati, caricati con FN, sono stati preparati utilizzando collagene di tipo I estratto da tendini di coda di ratto e poi caratterizzati in termini di vitalità cellulare, contrazione dei gel, proprietà meccaniche (prove di stress-rilassamento), morfologia e istologia. La presenza di FN nella formulazione dei gel di collagene implementa il grado di contrazione dei costrutti e le loro proprietà meccaniche già dopo 24 ore di coltura. In particolare è stata scelta una concentrazione ottimale di FN pari a 0.05 mg/ml ed ha portato ad un notevole aumento di circa il 25% in termini di contrazione dei gel di collagene discoidali dopo 24 ore di maturazione statica rispetto al gel di collagene senza FN. La stessa quantità di FN ha portato ad un aumento del 40% in termini di contrazione radiale per i costrutti di collagene di forma tubolare dopo un giorno di maturazione. Per quanto concerne le proprietà meccaniche, i campioni caricati con FN hanno mostrato valori di modulo elastico sia in compressione che a trazione quasi doppi in confronto a quelli relativi ai gel di collagene senza FN. Anche se le proprietà meccaniche ottenute, in termini di modulo elastico a trazione, sono inferiori a quelle del tessuto nativo, sono comunque confrontabili con i valori già riscontrati in letteratura. Infine, nella fase finale di questo lavoro, il gene delivery è stato combinato con i costrutti di collagene cellularizzati, al fine di dimostrare la possibilità di up-regolare l'espressione dei transgeni, come ad esempio la tropoelastina, all'interno di questi sistemi. I risultati ottenuti hanno permesso di affermare che sia la vitalità delle cellule sia l'attività luciferasica erano paragonabili ai risultati, relativi alle cellule transfettate, ottenuti con metodiche tradizionali. I valori di vitalità per ogni trasfettante sono risultati estremamente positivi con valori intorno al 100% mentre l’efficienza di trasfezione drasticamente diminuisce dopo 48h. Si è così potuto stabilire che il procedimento di tripsinizzazione e la semina in gel, anche dopo 4 ore dalla fine della trasfezione, non incidono sulla capacità delle cellule trasfettate nell’esprimere il transgene di interesse. In conclusione, l'alto livello di espressione conservato anche dopo la semina nei gel di collagene dimostrano chiaramente la fattibilità di combinare il gene delivery con i modelli di pareti vascolari a base di gel di collagene. Abbiamo quindi dimostrato la possibilità di utilizzare il gene delivery per favorire la deposizione di fibre elastiche all'interno di costrutti a base di gel di collagene e l'importanza della FN nel loro rimodellamento da parte delle cellule vascolari. La combinazione dei gel di collagene caricati con FN ed i protocolli di trasfezione ottimizzati per l'espressione di componenti di fibre elastiche è ancora in corso e permetterà di indagare il processo di elastogenesi in modelli di arterie in vitro. Al fine di verificare la deposizione di elastina all'interno dei gel di collagene, i campioni sono stati inclusi in paraffina e sono state successivamente tagliate sezioni di 4 m. La colorazione della tropoelastina e di altre proteine rilevanti legate alle fibre elastiche quali fibrillina-1 e lysyl ossidasi è in corso in collaborazione con l'Università McGill (Montreal), dove sono in fase di sviluppo i protocolli di colorazione adeguati. Questa analisi permetterà di valutare il ruolo effettivo della FN durante l’elastogenesi, e, in particolare, se la presenza di FN eventualmente combinata con transgeni come FBN-1, potrebbe migliorare ulteriormente questo processo. Diversi altri esperimenti saranno eseguiti nel contesto di questo studio. Prima di tutto una serie di esperimenti sarà condotta al fine di verificare se i gel di collagene caricati con SMCs che esprimono Fibrillina-1 possono portare a modelli vascolari con maggiori proprietà meccaniche e strutturali e per chiarire il ruolo della FN nel processo di maturazione delle microfibrille all'interno del modelli 3D a base di gel di collagene. Successivamente l'attenzione si concentrerà sullo studio del processo di elastogenesi nel modello di tunica media, per chiarire il ruolo della tropoelastina, fibrillina-1 e FN nella deposizione e organizzazione delle fibre elastiche in modelli 3D di parete arteriosa. Successivamente, i modelli sviluppati verranno implementati con l'aggiunta di uno strato di ECs sulla superficie del gel di collagene cellularizzato con SMCs, riproducendo la tunica intima delle arterie. Le ECs saranno trasfettate con protocolli ottimizzati per promuovere la deposizione di componenti di fibre elastiche e produrre una struttura elastica simile alla lamina. Per sviluppare questi modelli di co-coltura, i costrutti tubolari saranno montati su un bioreattore a pareti rotanti sviluppato presso LBB per testare la capacità di depositare microfibrille e/o fibre elastiche da parte di ECs trasfettate. Infine, un modello di tri-coltura sarà sviluppato ottenendo dei costrutti a tre strati composti da un monostrato di ECs (tunica intima), uno strato di gel di collagene cellularizzato con SMC (tunica media) ed uno strato di gel di collagene esterno seminato con FBs (tunica avventizia), volto a riprodurre completamente la struttura arteriosa. Questo modello di tri-cultura permetterà di indagare le relazioni intime reciproche esistenti tra ECs, SMCs e FBs nel processo di deposizione e rimodellamento della ECM vascolare. I risultati ottenuti nel corso della ricerca proposta permetteranno di migliorare la comprensione dei meccanismi alla base della deposizione e organizzazione della ECM vascolare con una particolare attenzione alla formazione delle fibre elastiche. Inoltre, l'insieme di modelli di tessuto vascolare che saranno sviluppati in questa ricerca costituiranno una piattaforma di prova versatile con una vasta gamma di possibili applicazioni e rappresenteranno un’alternativa pratica, conveniente e affidabile per test in grande scala di screening in vivo, migliorando infine anche l’efficacia della ricerca clinica nel campo delle malattie vascolari.
An innovative in vitro approach for blood vessels tissue engineering
FOIS, GIULIA;BIRIBIN, GIORGIO ALFREDO
2014/2015
Abstract
The cardiovascular system permits blood to circulate and transport nutrients (such as amino acids and electrolytes), oxygen, carbon dioxide, hormones, and blood cells to and from the cells in the body to provide nourishment and help in fighting diseases, stabilize temperature and pH and maintain homeostasis. The essential components of the human cardiovascular system are the heart, blood and blood vessels. Many diseases affect the cardiovascular system and among them atherosclerosis, which consists in the formation of atheromatous plaques in the walls of arteries possibly leading to their occlusion, is the most relevant one. Atherosclerosis is one of the leading causes of death in Western society and one of the most pressing clinical problems of the field is the need for small diameter vascular grafts for coronary artery bypass surgery. In the USA alone, nearly 1.4 million surgical procedures related to coronaropathies (balloon angioplasty, coronary atherectomy, insertion of coronary artery stent, coronary artery bypass graft) are performed annually (USA Centers for Disease Control and Prevention, 2010 update) and the number of coronary interventions is predicted to increase considerably owing to the rapid growth of the elderly demographic of the population. In this context, tissue engineered blood vessels (TEBVs) have been proposed as living arterial substitutes and many progresses have been made in this direction. Unfortunately, further work is still needed to ensure success in eventual clinical translation. However, there exists a urgent and critical need for preclinical testing systems, alternative to in vivo tests, for application in cardiovascular research (investigation of the physiology of vascular tissue and of the etiology of vascular diseases) and for the development of intravascular technologies (e.g., drug-delivery systems, stents, intravascular imaging) and drugs and, in this context, the use of TEBVs as vascular tissue models could be immediately impactful. In fact, vascular tissue engineering has emerged as a promising technology in the design of ideal, responsive, living artery equivalents. In this context, the use of collagen gels do have a number of benefits, such as biocompatibility, absence of immunogenicity and high availability, since it could be easily purified from living organisms. However, collagen gel-based TEBVs, even upon extensive remodelling and maturation in dynamic conditions, commonly suffer from two interrelated issues: i) absence in their composition of important protein components, specifically elastic fibres and ii) insufficient mechanical properties, especially in terms of elastic properties. In fact, elastin, the main component of elastic fibres, is notably absent from the approaches utilized to engineer vessels and it is recognised that the process of elastic fibres deposition (elastogenesis) is extremely reduced in collagen gels and in general in vitro. Elastogenesis begins with the deposition of fibrillin-1 (FBN-1) that is strictly dependent on the presence of extracellular fibrils of fibronectin (FN). Subsequently FBN-1 acts as a template for soluble tropoelastin that is then cross-linked and arranged to form mature elastic fibres. Elastic fibres are the dominant protein structures of the arterial wall playing a pivotal role in the definition of its biomechanical properties. They impart elasticity to the tissue, providing elastic recoil, but have also key biological roles in the physiology of arteries; therefore, their presence in artery models is pivotal and succeeding in stimulating their deposition would represent a significant breakthrough in vascular tissue engineering. In this project, the use of gene delivery has been proposed as possible solution to this issue. Gene delivery techniques allow the regulation of expression of specific proteins in target cells, and represent a robust tool for tissue engineering, as evidenced by a number of combined approaches reported in literature. Gene delivery consists in the introduction of exogenous genetic material into cells in order to alter their phenotype. Its clinical translation, named gene therapy, represents a promising approach for the treatment of a wide variety of diseases that conventional medicine fails to address. Several delivery methods have been developed to allow the transport of nucleic acids inside cells, each of them with its own advantages and disadvantages. Viruses are recognized as the most efficient gene delivery vectors but the limited size of the nucleic acids they can carry hinders their application when large genes or multiple genes have to be delivered. The use of non-viral methods can overcome this issue, although they often exhibit lower delivery efficacies. Chemical non-viral vectors for gene delivery mainly encompass two major classes, cationic lipids and cationic polymers that can be engineered to target specific cells and can be customized for specific applications such as for tissue engineering purposes. The overall goal of this work is to combine gene delivery techniques with cellularised collagen gels in order to promote the expression and deposition of elastic fibre components in vascular constructs, finally producing in vitro models with structural properties mimicking those of native tissues. In this context, the objectives of this thesis are focused on primary necessary steps to lay the groundwork for an optimal in vitro arterial model. The aims of this project developed at LBB (Laboratoire de Biomatériaux et Bioingénierie, Canada) are threefold and the experimental work can be divided in three corresponding phases: • Aim 1: Identification and development of superior transfection reagents and optimization of transfection protocols for SMCs and ECs • Aim 2: Development and characterization of fibronectin-loaded collagen gel constructs cellularised with SMCs • Aim 3: Combination of the two approaches previously described in order to realize and characterize fibronectin-loaded collagen gel constructs cellularised with transfected SMCs/ECs Primary Smooth Muscle Cells (SMCs) from Porcine Aorta (PAoSMCs), Human Umbilical Artery SMCs (HUASMCs) and Human Umbilical Vein Endothelial Cells (HUVECs) were transfected with pGLuc, pEYFP or pELAST (encoding human tropoelastin) using Lipofectamine 2000, Lipofectamine 3000, bPEI, LPEI and JetPEI. A series of experiments investigating intrinsic and extrinsic transfection parameters were performed to create optimized transfection protocols. In particular, DNA/reagent ratio, plasmid dose delivered to cells, medium change, centrifugation and transfection medium were optimised, thus allowing to outline the best transfection protocols for each cell type and transfection reagent. Cell viability and luciferase activity were assayed in order to identify the best compromise between low cytotoxicity and high transfection efficiency. Immunofluorescence analysis permitted to evaluate qualitatively the results obtained using the optimized transfection protocols. PAoSMCs were discovered to be the best cell type compared to HUASMCs and HUVECs in terms of a tolerable cytotoxicity matched with highest transfection efficiency. The transfection optimization herein adopted allowed to choose in a wide range of reagent/DNA ratios the best transfection conditions for each cell type. In this first comparative series of experiments it was possible to state for Lipofectamine 2000 the reagent/DNA ratio equal to 3, for Lipofectamine 3000 ratio 2 and for jetPEI ratio 4. Subsequently it was possible to establish the positive effect of the 4h medium change on cell viability and the remarkable increase in transfection efficiency due to a centrifugation step immediately after the administration of the transfection complexes to the cells. Furthermore, the dose-response experiments enabled to identify the best transfectant and DNA dose for each cell type: i) for PAoSMCs, Lipofectamine 2000 at 0.075 μg/cm2; ii) for HUASMCs, Lipofectamine 2000 at a dose of 0.01875 μg/cm2 and iii) for HUVECs, bPEI (N/P30) at a dose of 0.15 μg/cm2. Through kinetic analysis it was possible to define a gene expression trend until 7d. The series of experiments conducted in this first phase allowed to define optimized transfection protocols providing that transfections were conducted in complete DMEM + 10% FBS and 1% PenStrep without growth factors, immediately after the transfection procedure cells were centrifuged in order to increase their luciferase activity and after 4 hours of incubation medium was replaced with fresh new DMEM allowing the increase in cell viability. However, some limitations were highlighted especially in terms of cytotoxicity concerning HUASMCs and in transfection efficiency for both HUASMCs and HUVECs in comparison to PAoSMCs. Since the presence of FN is fundamental in the deposition of elastic fibers, cellularised collagen gels were loaded with FN and the influence of FN content on construct properties was investigated. Disc and tubular-shaped cellularised collagen gels, loaded with FN, were prepared using type I collagen from rat tail tendon and then characterized in terms of cell viability, gel contraction, mechanical properties (stress-relaxation tests), morphology and histology. The presence of FN in the collagen gel formulation improved construct contraction and its mechanical properties already after 24h of culture. In particular a FN concentration of 0.05 mg/ml was chosen as optimal and led to an appreciable increase of approximately 25% of contraction of disk-shaped collagen gels after 24h of static maturation if compared to plain collagen gels. The same amount of FN led to an increase of 40% of radial contraction for tubular-shaped collagen constructs after one day of maturation. Regarding mechanical properties, FN-loaded samples exhibited values of both compressive and tensile elastic modulus that almost doubled those associated with plain collagen gels. Even if the mechanical properties, in terms of tensile elastic modulus, were lower than those of native tissue, they were anyway comparable with values already found in literature. In the final part of the present work, gene delivery was applied to cellularised collagen constructs, aiming at demonstrating the possibility to up-regulate the expression of transgenes such as tropoelastin inside these systems. The results allowed to state that both cell viability and luciferase activity were comparable to the results obtained for cells transfected in traditional ways. Viability for each transfectant was extremely positive and around 100%, and luciferase activity drastically decreased after 48h. Thus the tripsinization and the seeding in gels, even after 4h from the end of transfection, did not affect the capability of transfected cells to express the transgene of interest. In conclusion, the high expression level preserved even after the seeding in collagen constructs clearly demonstrates the feasibility of combining gene delivery with collagen gel- based vascular wall models. Herein, we showed the feasibility of using gene delivery to foster elastic fibres deposition inside collagen gel-based constructs and the importance of FN in their remodelling by vascular cells. The combination of FN-loaded collagen gels with optimized transfection protocols for the expression of elastic fibres components is ongoing and will allow to investigate the process of elastogenesis in in vitro artery models. In order to verify the deposition of elastin within collagen gels, samples were embedded in paraffin and 4 μm sections were cut. The staining of tropoelastin and of other relevant elastic fibres-related proteins, such as fibrillin-1 and lysyl oxidase, is ongoing in collaboration with McGill University (Montreal) where the appropriate staining protocol are being developed. This analysis will enable to assess the effective role of FN during elastogenesis, and, in particular, if the presence of FN, possibly combined with transgenes such as FBN-1, could further improve this process. Several further experiments will be performed in the context of this study. First of all a series of experiments will be conducted in order to verify if loading collagen gels with Fibrillin-1-expressing SMCs leads to vascular models with increased mechanical and structural properties and to clarify the role of FN in the process of microfibrils maturation inside collagen gel-based 3D models. Afterwards, the focus will be directed towards the investigation of the elastogenesis in the tunica media model, aimed at unravelling the role of tropoelastin, fibrillin-1 and FN in the deposition and organization of elastic fibres in 3D arterial wall models. Subsequently, the developed models will be upgraded by the addition of layers of ECs on the surface of SMCs-cellularised collagen gels, mimicking the tunica intima of arteries. ECs will be transfected, with optimised protocols in order to promote the deposition of elastic fibres components and to produce an elastic lamina-like structure. To develop these co-culture models, tubular constructs will be mounted on a rotating-wall bioreactor developed at LBB to test the ability to deposit microfibrils and/or elastic fibres by transfected ECs. Finally, a tri-culture model will be developed obtaining tri-layered constructs composed of an ECs monolayer (intima layer), a layer of SMCs-cellularised collagen gel (media layer) and an outer collagen gel layer seeded with FBs (adventitia layer), aimed at completely mimicking the arterial structure. This tri-culture tri-layered model will allow to investigate the mutual intimate relationships existing among ECs, SMCs and FBs in the process of deposition and remodelling of the vascular ECM. The results obtained during the proposed research will allow to improve the understanding of the mechanisms related to the deposition and organization of vascular ECM with a special focus on elastic fibres formation. Furthermore, the set of vascular tissue models will constitute a versatile testing platform with a wide range of possible applications and will represent a practical, cost-effective and reliable alternative to massive in vivo screening, finally improving the effectiveness of clinical research in the field of vascular diseases.File | Dimensione | Formato | |
---|---|---|---|
2016_04_Biribin_Fois.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.2 MB
Formato
Adobe PDF
|
5.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/121069