Electrophoretic deposition (EPD) is a versatile bottom-up technique for the production of chitosan thin films. The first purpose of this study was to verify the possibility of a co-deposition of collagen and chitosan blends that could mimic the native extracellular matrix (ECM) of bone tissue. Secondly, the morphological, mechanical and chemico-physical properties of the electrodeposited scaffolds were investigated using different techniques. Lastly a cathode with a circular pattern was used to produce patterned chitosan-collagen films, that were characterized and compared to smooth chitosan-collagen samples. The morphological characterization was carried on with Digital Pulsed Force Mode – Atomic Force Microscopy (DPFM-AFM) and stereomicroscopy. No significant variation of nano-roughness was measured increasing the collagen content, while the porosity of the samples with higher collagen percentage decreased. The swelling behavior of the samples was analyzed through a swelling test in order to measure their water uptake capacity, an important feature for regenerative bioengineering. The mechanical properties were characterized at a macroscopic level through a Dynamic Mechanical Analysis (DMA) that consented to evaluate the Young’s modulus, the tensile strength and the maximum elongation, mechanical properties resulting affected by the ratio of collagen to chitosan in the films. These results have been compared with DPFM-AFM. Here, a slight reduction of stiffness was measured in samples with increasing collagen content. In addition, the similarity in the maximum and minimum stiffness trend and the homogeneous distribution in the stiffness maps were taken as evidences of the single-phase nature of the material, that was further investigated by spectroscopic analysis. In fact, the molecular interactions in chitosan-collagen (Ch-Co) complexes have been characterized by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. It was found that chitosan and collagen are miscible at the molecular level, exhibit interactions between the components and that the collagen helix structure is not totally lost in Ch-Co films by increasing chitosan content. Concerning the patterned samples, a mechanical difference between patterned and smooth films was measured as well as no differences in swelling behavior were found. As stated, the blending of collagen with chitosan gives the possibility of producing new bespoke materials for potential biomedical applications.
La deposizione elettroforetica (EPD) è una tecnica bottom-up versatile per la produzione di film sottili chitosano. Il primo scopo di questo studio è stato quello di verificare la possibilità di un co-deposizione di una miscela di collagene e chitosano che potesse mimare la matrice extracellulare (ECM) nativa del tessuto osseo. In secondo luogo, le proprietà morfologiche, meccaniche e chimico-fisiche degli scaffolds elettrodepositati sono stati studiati con diverse tecniche. Infine è stato utilizzato un catodo con un pattern circolare per produrre film di chitosano-collagene patternati, che sono stati caratterizzati e confrontati con i campioni lisci. La caratterizzazione morfologica è stata condotta tramite microscopia a forza atomica -Digital Pulse Mode Force (AFM-DPFM) e stereomicroscopia. Nessuna variazione significativa di micro-rugosità stata misurata all’aumentare del contenuto di collagene, mentre la porosità dei campioni che presentavano una percentuale più elevata di collagene è diminuita. Il comportamento di rigonfiamento dei campioni è stato analizzato attraverso uno swelling test per misurare la capacità di assorbimento d’acqua dei supporti depositati, una caratteristica importante per la medicina rigenerativa. Le proprietà meccaniche sono state caratterizzate a livello macroscopico attraverso una analisi meccanica dinamica (DMA) che ha consentito di valutare il modulo di Young, la resistenza a trazione e l’allungamento massimo. Il modulo di Young è risultato essere dipendente dal rapporto di chitosano-collagene Ch-Co presente nei film. Questi risultati sono stati confrontati con un’analisi AFM-DPFM. Qui, è stata riscontrata una leggera riduzione della rigidità nei campioni man mano che cresceva il contenuto di collagene. Inoltre, la somiglianza nell’andamento della rigidità massima e minima e la distribuzione omogenea nelle mappe di rigidità sono stati considerati come prove della natura monofase del materiale, che è stato ulteriormente studiato mediante analisi spettroscopica. Le interazioni molecolari dei complessi Ch-Co sono state infatti successivamente caratterizzate da spettroscopia infrarossa in trasformata di Fourier (FT-IR) e spettroscopia Raman. Si è constatato che il chitosano e il collagene sono miscibili a livello molecolare e che la struttura a tripla elica del collagene non è completamente persa nei substrati di Ch-Co con un più elevato contenuto di chitosano. Per quanto riguarda i campioni con il pattern, è stata misurata una differenza meccanica tra i film omogenei e quelli che presentavano il pattern, mentre non sono state trovate differenze nel comportamento di swelling. La co-deposizione di collagene e chitosano dà quindi la possibilità di produrre nuovi materiali su misura per potenziali applicazioni biomediche.
Influence of physicochemical arrangement on mechanical and morphological properties of electrodeposited chitosan-collagen scaffolds for bone tissue
CRICO, FRANCESCA
2015/2016
Abstract
Electrophoretic deposition (EPD) is a versatile bottom-up technique for the production of chitosan thin films. The first purpose of this study was to verify the possibility of a co-deposition of collagen and chitosan blends that could mimic the native extracellular matrix (ECM) of bone tissue. Secondly, the morphological, mechanical and chemico-physical properties of the electrodeposited scaffolds were investigated using different techniques. Lastly a cathode with a circular pattern was used to produce patterned chitosan-collagen films, that were characterized and compared to smooth chitosan-collagen samples. The morphological characterization was carried on with Digital Pulsed Force Mode – Atomic Force Microscopy (DPFM-AFM) and stereomicroscopy. No significant variation of nano-roughness was measured increasing the collagen content, while the porosity of the samples with higher collagen percentage decreased. The swelling behavior of the samples was analyzed through a swelling test in order to measure their water uptake capacity, an important feature for regenerative bioengineering. The mechanical properties were characterized at a macroscopic level through a Dynamic Mechanical Analysis (DMA) that consented to evaluate the Young’s modulus, the tensile strength and the maximum elongation, mechanical properties resulting affected by the ratio of collagen to chitosan in the films. These results have been compared with DPFM-AFM. Here, a slight reduction of stiffness was measured in samples with increasing collagen content. In addition, the similarity in the maximum and minimum stiffness trend and the homogeneous distribution in the stiffness maps were taken as evidences of the single-phase nature of the material, that was further investigated by spectroscopic analysis. In fact, the molecular interactions in chitosan-collagen (Ch-Co) complexes have been characterized by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. It was found that chitosan and collagen are miscible at the molecular level, exhibit interactions between the components and that the collagen helix structure is not totally lost in Ch-Co films by increasing chitosan content. Concerning the patterned samples, a mechanical difference between patterned and smooth films was measured as well as no differences in swelling behavior were found. As stated, the blending of collagen with chitosan gives the possibility of producing new bespoke materials for potential biomedical applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
2016_04_Crico.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
7.28 MB
Formato
Adobe PDF
|
7.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/121380